305 research outputs found

    Dangerous implications of a minimum length in quantum gravity

    Full text link
    The existence of a minimum length and a generalization of the Heisenberg uncertainty principle seem to be two fundamental ingredients required in any consistent theory of quantum gravity. In this letter we show that they would predict dangerous processes which are phenomenologically unacceptable. For example, long--lived virtual super--Planck mass black holes may lead to rapid proton decay. Possible solutions of this puzzle are briefly discussed.Comment: 5 pages, no figure. v3: refereed versio

    A revision of the Generalized Uncertainty Principle

    Full text link
    The Generalized Uncertainty Principle arises from the Heisenberg Uncertainty Principle when gravity is taken into account, so the leading order correction to the standard formula is expected to be proportional to the gravitational constant GN=LPl2G_N = L_{Pl}^2. On the other hand, the emerging picture suggests a set of departures from the standard theory which demand a revision of all the arguments used to deduce heuristically the new rule. In particular, one can now argue that the leading order correction to the Heisenberg Uncertainty Principle is proportional to the first power of the Planck length LPlL_{Pl}. If so, the departures from ordinary quantum mechanics would be much less suppressed than what is commonly thought.Comment: 6 pages, 1 figur

    Gravitomagnetism in superconductors and compact stars

    Full text link
    There are three experimentally observed effects in rotating superconductors that are so far unexplained. Some authors have tried to interpret such a phenomena as possible new gravitational properties of coherent quantum systems: in particular, they suggest that the gravitomagnetic field of that kind of matter may be many orders of magnitude stronger than the one expected in the standard theory. Here I show that this interpretation would be in conflict with the common belief that neutron stars have neutrons in superfluid state and protons in superconductive one.Comment: 9 pages, no figur

    Thick disk accretion in Kerr space-time with arbitrary spin parameters

    Full text link
    In this paper we extend our previous works on spherically symmetric accretion onto black holes and super-spinars to the case in which the fluid has a finite angular momentum initially. We run 2.5D and 3D general relativistic hydrodynamic simulations of the accretion of a fat disk. We study how the accretion process changes by changing the values of the parameters of our model. We show that the value of the fluid angular momentum critically determines turn-on and off the production of powerful equatorial outflows around super-spinars. For corotating disks, equatorial outflows are efficiently generated, even for relatively low spin parameters or relatively large super-spinar radii. For counterrotating disks, equatorial outflows are instead significantly suppressed, and they are possible only in limited cases. We also study accretion around a tilted disk.Comment: 11 pages, 10 figure

    Towards the use of the most massive black hole candidates in AGN to test the Kerr paradigm

    Full text link
    The super-massive objects in galactic nuclei are thought to be the Kerr black holes predicted by General Relativity, although a definite proof of their actual nature is still lacking. The most massive objects in AGN (M∼109M⊙M \sim 10^9 M_\odot) seem to have a high radiative efficiency (η∼0.4\eta \sim 0.4) and a moderate mass accretion rate (Lbol/LEdd∼0.3L_{\rm bol}/L_{\rm Edd} \sim 0.3). The high radiative efficiency could suggest they are very rapidly-rotating black holes. The moderate luminosity could indicate that their accretion disk is geometrically thin. If so, these objects could be excellent candidates to test the Kerr black hole hypothesis. An accurate measurement of the radiative efficiency of an individual AGN may probe the geometry of the space-time around the black hole candidate with a precision comparable to the one achievable with future space-based gravitational-wave detectors like LISA. A robust evidence of the existence of a black hole candidate with η>0.32\eta > 0.32 and accreting from a thin disk may be interpreted as an indication of new physics. For the time being, there are several issues to address before using AGN to test the Kerr paradigm, but the approach seems to be promising and capable of providing interesting results before the advent of gravitational wave astronomy.Comment: 12 pages, 6 figures. v2: some typos correcte

    A note on the black hole information paradox in de Sitter spacetimes

    Full text link
    The possibility of stable or quasi--stable Planck mass black hole remnants as solution to the black hole information paradox is commonly believed phenomenologically unacceptable: since we have to expect a black hole remnant for every possible initial state, the number of remnants should be infinite. This would lead to remnant pair production in any physical process with a total available energy roughly exceeding the Planck mass, against trivial evidences. In this note I point out that the number of remnants in our Universe could be finite, at least if the value of the cosmological constant is positive, as present observational data could indicate. Nevertheless, it is not clear if a huge but finite number of states is phenomenologically allowed.Comment: 4 pages, 1 figure. v3: refereed versio

    Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity

    Get PDF
    We construct asymptotically flat, spinning, regular on and outside an event horizon, scalarized black holes (SBHs) in extended scalar-tensor-Gauss-Bonnet models. They reduce to Kerr BHs when the scalar field vanishes. For an illustrative choice of nonminimal coupling, we scan the domain of existence. For each value of spin, SBHs exist in an interval between two critical masses, with the lowest one vanishing in the static limit. Non-uniqueness with Kerr BHs of equal global charges is observed; the SBHs are entropically favoured. This suggests that SBHs form dynamically from the spontaneous scalarization of Kerr BHs, which are prone to a scalar-triggered tachyonic instability, below the largest critical mass. Phenomenologically, the introduction of BH spin damps the maximal observable difference between comparable scalarized and vacuum BHs. In the static limit, (perturbatively stable) SBHs can store over 20% of the spacetime energy outside the event horizon; in comparison with Schwarzschild BHs, their geodesic frequency at the ISCO can differ by a factor of 2.5 and deviations in the shadow areal radius may top 40%. As the BH spin grows, low mass SBHs are excluded, and the maximal relative differences decrease, becoming of the order of a few percent for dimensionless spin j≳0.5. This reveals a spin selection effect: non-GR effects are only significant for low spin. We discuss if and how the recently measured shadow size of the M87 supermassive BH constrains the length scale of the Gauss-Bonnet coupling.publishe

    Periodic Orbits and Escapes in Dynamical Systems

    Full text link
    We study the periodic orbits and the escapes in two different dynamical systems, namely (1) a classical system of two coupled oscillators, and (2) the Manko-Novikov metric (1992) which is a perturbation of the Kerr metric (a general relativistic system). We find their simple periodic orbits, their characteristics and their stability. Then we find their ordered and chaotic domains. As the energy goes beyond the escape energy, most chaotic orbits escape. In the first case we consider escapes to infinity, while in the second case we emphasize escapes to the central "bumpy" black hole. When the energy reaches its escape value a particular family of periodic orbits reaches an infinite period and then the family disappears (the orbit escapes). As this family approaches termination it undergoes an infinity of equal period and double period bifurcations at transitions from stability to instability and vice versa. The bifurcating families continue to exist beyond the escape energy. We study the forms of the phase space for various energies, and the statistics of the chaotic and escaping orbits. The proportion of these orbits increases abruptly as the energy goes beyond the escape energy.Comment: 28 pages, 23 figures, accepted in "Celestial Mechanics and Dynamical Astronomy

    Entanglement as a signature of quantum chaos

    Get PDF
    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter κ\kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both bipartite and pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as κ\kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over initial states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.Comment: 8 pages, 8 figure
    • …
    corecore