2,648 research outputs found

    Flexural fatigue of hollow rolling elements

    Get PDF
    Hollow cylindrical bars were tested in the rolling-contact fatigue tester to determine the effects of material and outside diameter to inside diameter (OD/ID) ratios of 2.0, 1.6, 1.4, and 1.2 on fatigue failure mode and subsequent failure propagation. The range of applied loads with these OD/ID ratios resulted in maximum tangential tensile stresses ranging from 165 to 655 megapascals (24,000 to 95,000 psi) at the bore surface. Flexural failures of the hollow test bars occurred when this bore stress was 490 megapascals (71,000 psi) or greater with AISI 52100 hollow bars and 338 megapascals (49,000 psi) or greater with AISI M-50 hollow bars. Good correlation was obtained in relating the failures of these hollow bars with flexural failures of drilled balls from previously published full scale bearing tests

    Separation of biological materials in microgravity

    Get PDF
    Partition in aqueous two phase polymer systems is a potentially useful procedure in downstream processing of both molecular and particulate biomaterials. The potential efficiency of the process for particle and cell isolations is much higher than the useful levels already achieved. Space provides a unique environment in which to test the hypothesis that convection and settling phenomena degrade the performance of the partition process. The initial space experiment in a series of tests of this hypothesis is described

    Demixing kinetics of phase separated polymer solutions in microgravity

    Get PDF
    Phase separated solutions of two neutral polymers in buffer provide a useful and versatile medium for the partition separation of biological cells. However, the efficiency of such separations is orders of magnitude lower than the thermodynamic limit. To test the hypothesis that this inefficiency is at least partially due to the convection and sedimentation that occur during the gravity driven demixing that follows introduction of cells to the systems, a series of experiments were begun aimed at performing cell partition in a low g environment. Demixing of isopycnic three polymer solvent systems was studied, experiments were performed on KC-135 aircraft and one shuttle middeck experiment was completed. Analysis of the results of these experiments and comparisons with the predictions of scaling relations for the dependence of phase domain size on time, derived for a number of possible demixing mechanisms, are presented

    Demixing of aqueous polymer two-phase systems in low gravity

    Get PDF
    When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered

    Nonsingular change of assembly mode without any cusp

    Get PDF
    International audienceThis paper shows for the first time a parallel manipulator that can execute nonsingular changes of assembly modes while its joint space is free of cusp points and cuspidal edges. The manipulator at hand has two degrees of freedom and is derived from a 3-RPR manipulator; the shape of its joint space is a thickening of a figure-eight curve. A few explanations concerning the relationship between cusps and alpha curves are given

    Gap-filling strategies for annual VOC flux data sets

    Get PDF
    Up to now the limited knowledge about the exchange of volatile organic compounds (VOCs) between the biosphere and the atmosphere is one of the factors which hinders more accurate climate predictions. Complete long-term flux data sets of several VOCs to quantify the annual exchange and validate recent VOC models are basically not available. In combination with long-term VOC flux measurements the application of gap-filling routines is inevitable in order to replace missing data and make an important step towards a better understanding of the VOC ecosystem–atmosphere exchange on longer timescales. <br><br> We performed VOC flux measurements above a mountain meadow in Austria during two complete growing seasons (from snowmelt in spring to snow reestablishment in late autumn) and used this data set to test the performance of four different gap-filling routines, mean diurnal variation (MDV), mean gliding window (MGW), look-up tables (LUT) and linear interpolation (LIP), in terms of their ability to replace missing flux data in order to obtain reliable VOC sums. According to our findings the MDV routine was outstanding with regard to the minimization of the gap-filling error for both years and all quantified VOCs. The other gap-filling routines, which performed gap-filling on 24 h average values, introduced considerably larger uncertainties. The error which was introduced by the application of the different filling routines increased linearly with the number of data gaps. Although average VOC fluxes measured during the winter period (complete snow coverage) were close to zero, these were highly variable and the filling of the winter period resulted in considerably higher uncertainties compared to the application of gap-filling during the measurement period. <br><br> The annual patterns of the overall cumulative fluxes for the quantified VOCs showed a completely different behaviour in 2009, which was an exceptional year due to the occurrence of a severe hailstorm, compared to 2011. Methanol was the compound which, at 381.5 mg C m<sup>&minus;2</sup> and 449.9 mg C m<sup>&minus;2</sup>, contributed most to the cumulative VOC carbon emissions in 2009 and 2011, respectively. In contrast to methanol emissions, however, considerable amounts of monoterpenes (−327.3 mg C m<sup>&minus;2</sup>) were deposited onto the mountain meadow during 2009 caused by a hailstorm. Other quantified VOCs had considerably lower influences on the annual patterns

    Preduodenal Portal Vein And Polysplenia: A Case Report and Review Of Literature

    Get PDF
    Preduodenal portal vein (PDPV) is a rare anomaly in which the portal vein courses anterior to the second part of the duodenum. PDPV is often associated with other congenital anomalies such as polysplenia, malrotation and pancreatic anomalies. We report an elderly male with Stage IIB esophageal adenocarcinoma. Incidental findings on staging computed tomography (CT) included an anomalous preduodenal and presplenic portal vein and polysplenia, though the patient did not present with any symptoms related to these findings. Post-neoadjuvant chemoradiation, the patient underwent an Ivor Lewis esophagectomy. Appreciating the anomalous tract of the portal vein anterior to the pancreas and duodenum from the preoperative images, we were able to perform duodenal mobilization (Kocher manuever) without vessel injury. Since, PDPV is often an asymptomatic and incidental finding in adults, serious surgical complications may occur if not appreciated on preoperative imaging or intraoperatively. Heightened awareness of PDPV and other associated anomalies remains vital to a safe procedure in all ages
    • …
    corecore