5,446 research outputs found

    Moving beyond the ‘crisis’: Recommendations for the European Commission’s communication on migration. EPC Discussion Paper, 9 DECEMBER 2019

    Get PDF
    The year 2015 marked the arrival of an unprecedented number of migrants and refugees in the EU. Soon politicians, policymakers and the press dubbed these events a ‘migration crisis’. With the steep increase in public attention putting migration at the very top of the political agenda, right-wing populist parties saw their chance to capitalise on voters’ concerns in a vast majority of EU member states

    The Value of Security Agreements

    Get PDF

    Intriguing sets of partial quadrangles

    Full text link
    The point-line geometry known as a \textit{partial quadrangle} (introduced by Cameron in 1975) has the property that for every point/line non-incident pair (P,â„“)(P,\ell), there is at most one line through PP concurrent with â„“\ell. So in particular, the well-studied objects known as \textit{generalised quadrangles} are each partial quadrangles. An \textit{intriguing set} of a generalised quadrangle is a set of points which induces an equitable partition of size two of the underlying strongly regular graph. We extend the theory of intriguing sets of generalised quadrangles by Bamberg, Law and Penttila to partial quadrangles, which surprisingly gives insight into the structure of hemisystems and other intriguing sets of generalised quadrangles

    Anomalous transport resolved in space and time by fluorescence correlation spectroscopy

    Get PDF
    A ubiquitous observation in crowded cell membranes is that molecular transport does not follow Fickian diffusion but exhibits subdiffusion. The microscopic origin of such a behaviour is not understood and highly debated. Here we discuss the spatio-temporal dynamics for two models of subdiffusion: fractional Brownian motion and hindered motion due to immobile obstacles. We show that the different microscopic mechanisms can be distinguished using fluorescence correlation spectroscopy (FCS) by systematic variation of the confocal detection area. We provide a theoretical framework for space-resolved FCS by generalising FCS theory beyond the common assumption of spatially Gaussian transport. We derive a master formula for the FCS autocorrelation function, from which it is evident that the beam waist of an FCS experiment is a similarly important parameter as the wavenumber of scattering experiments. These results lead to scaling properties of the FCS correlation for both models, which are tested by in silico experiments. Further, our scaling prediction is compatible with the FCS half-value times reported by Wawrezinieck et al. [Biophys. J. 89, 4029 (2005)] for in vivo experiments on a transmembrane protein.Comment: accepted for publication in Soft Matte
    • …
    corecore