48 research outputs found

    Basaltic Plinian eruptions at Las Sierras-Masaya volcano driven by cool storage of crystal-rich magmas

    Get PDF
    Although rare, basaltic Plinian eruptions represent a considerable volcanic hazard. The low viscosity of crystal-poor basaltic magma inhibits magma fragmentation; however, Las Sierras-Masaya volcano, Nicaragua, has produced multiple basaltic Plinian eruptions. Here, we quantify the geochemistry and volatile concentrations of melt inclusions in samples of the Fontana Lapilli and Masaya Triple Layer eruptions to constrain pre-eruptive conditions. Combining thermometry and geochemical modelling, we show that magma cooled to similar to 1000 degrees C prior to eruption, crystallising a mush that was erupted and preserved in scoriae. We use these data in a numerical conduit model, which finds that conditions most conducive to Plinian eruptions are a pre-eruptive temperature <1100 degrees C and a total crystal content >30 vol.%. Cooling, crystal-rich, large-volume basaltic magma bodies may be hazardous due to their potential to erupt with Plinian magnitude. Rapid ascent rates mean there may only be some minutes between eruption triggering and Plinian activity at Masaya

    An overview of tissue engineering approaches for management of spinal cord injuries

    Get PDF
    Severe spinal cord injury (SCI) leads to devastating neurological deficits and disabilities, which necessitates spending a great deal of health budget for psychological and healthcare problems of these patients and their relatives. This justifies the cost of research into the new modalities for treatment of spinal cord injuries, even in developing countries. Apart from surgical management and nerve grafting, several other approaches have been adopted for management of this condition including pharmacologic and gene therapy, cell therapy, and use of different cell-free or cell-seeded bioscaffolds. In current paper, the recent developments for therapeutic delivery of stem and non-stem cells to the site of injury, and application of cell-free and cell-seeded natural and synthetic scaffolds have been reviewed

    Limits in detecting acceleration of ice sheet mass loss due to climate variability

    No full text
    The Greenland and Antarctic ice sheets have been reported to be losing mass at accelerating rates1, 2. If sustained, this accelerating mass loss will result in a global mean sea-level rise by the year 2100 that is approximately 43 cm greater than if a linear trend is assumed2. However, at present there is no scientific consensus on whether these reported accelerations result from variability inherent to the ice-sheet–climate system, or reflect long-term changes and thus permit extrapolation to the future3. Here we compare mass loss trends and accelerations in satellite data collected between January 2003 and September 2012 from the Gravity Recovery and Climate Experiment to long-term mass balance time series from a regional surface mass balance model forced by re-analysis data. We find that the record length of spaceborne gravity observations is too short at present to meaningfully separate long-term accelerations from short-term ice sheet variability. We also find that the detection threshold of mass loss acceleration depends on record length: to detect an acceleration at an accuracy within ±10 Gt yr−2, a period of 10 years or more of observations is required for Antarctica and about 20 years for Greenland. Therefore, climate variability adds uncertainty to extrapolations of future mass loss and sea-level rise, underscoring the need for continuous long-term satellite monitoring
    corecore