112 research outputs found

    A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters.

    Get PDF
    PURPOSE: We hypothesized that different quantitative ultrasound (US) parameters may be used as complementary diagnostic criteria and aimed to develop a simple classification algorithm to distinguish benign from malignant breast lesions and aid in the decision to perform biopsy or not. PROCEDURES: One hundred twenty-four patients, each with one biopsy-proven, sonographically evident breast lesion, were included in this prospective, IRB-approved study. Each lesion was examined with B-mode US, Color/Power Doppler US and elastography (Acoustic Radiation Force Impulse-ARFI). Different quantitative parameters were recorded for each technique, including pulsatility (PI) and resistive Index (RI) for Doppler US and lesion maximum, intermediate, and minimum shear wave velocity (SWVmax, SWVinterm, and SWVmin) as well as lesion-to-fat SWV ratio for ARFI. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic performance of each quantitative parameter. Classification analysis was performed using the exhaustive chi-squared automatic interaction detection method. Results include the probability for malignancy for every descriptor combination in the classification algorithm. RESULTS: Sixty-five lesions were malignant and 59 benign. Out of all quantitative indices, maximum SWV (SWVmax), and RI were included in the classification algorithm, which showed a depth of three ramifications (SWVmax ≤ or > 3.16; if SWVmax ≤ 3.16 then RI ≤ 0.66, 0.66-0.77 or > 0.77; if RI ≤ 0.66 then SWVmax ≤ or > 2.71). The classification algorithm leads to an AUC of 0.887 (95 % CI 0.818-0.937, p < 0.0001), a sensitivity of 98.46 % (95 % CI 91.7-100 %), and a specificity of 61.02 % (95 % CI 47.4-73.5 %). By applying the proposed algorithm, a false-positive biopsy could have been avoided in 61 % of the cases. CONCLUSIONS: A simple classification algorithm incorporating two quantitative US parameters (SWVmax and RI) shows a high diagnostic performance, being able to accurately differentiate benign from malignant breast lesions and lower the number of unnecessary breast biopsies in up to 60 % of all cases, avoiding any subjective interpretation bias

    Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative "rule-in" and "rule-out" threshold values.

    Get PDF
    Our purpose was to evaluate Virtual Touch IQ (VTIQ) elastography and identify quantitative "rule-in" and "rule-out" thresholds for the probability of malignancy, which can help avoid unnecessary breast biopsies. 189 patients with 196 sonographically evident lesions were included in this retrospective, IRB-approved study. Quantitative VTIQ images of each lesion measuring the respective maximum Shear Wave Velocity (SWV) were obtained. Paired and unpaired, non-parametric statistics were applied for comparisons as appropriate. ROC-curve analysis was used to analyse the diagnostic performance of VTIQ and to specify "rule-in" and "rule-out" thresholds for the probability of malignancy. The standard of reference was either histopathology or follow-up stability for >24 months. 84 lesions were malignant and 112 benign. Median SWV of benign lesions was significantly lower than that of malignant lesions (p 98% with a concomitant significant (p = 0.032) reduction in false positive cases of almost 15%, whereas a "rule-in" threshold of 6.5 m/s suggested a probability of malignancy of >95%. In conclusion, VTIQ elastography accurately differentiates malignant from benign breast lesions. The application of quantitative "rule-in" and "rule-out" thresholds is feasible and allows reduction of unnecessary benign breast biopsies by almost 15%

    Microstructural breast tissue characterization: A head-to-head comparison of Diffusion Weighted Imaging and Acoustic Radiation Force Impulse elastography with clinical implications

    Get PDF
    Abstract Purpose Head-to-head comparison of Diffusion Weighted Imaging (DWI) and Acoustic Radiation Force Impulse (ARFI) elastography regarding the characterization of breast lesions in an assessment setting. Method Patients undergoing an ultrasound examination including ARFI and an MRI protocol including DWI for the characterization of a BI-RADS 3–5 breast lesion between 06/2013 and 10/2016 were eligible for inclusion in this retrospective, IRB-approved study. 60 patients (30–84 years, median 50) with a median lesion size of 16 mm (range 5–55 mm) were included. The maximum shear wave velocity (SWVmax) and mean apparent diffusion coefficient (ADCmean) for each lesion were retrospectively evaluated by a radiologist experienced in the technique. Histology was the reference standard. Diagnostic performances of ARFI and DWI were assessed using ROC curve analysis. Spearman's rank correlation coefficient and multivariate logistic regression were used to investigate the independence of both tests regarding their diagnostic information to distinguish benign from malignant lesions. Results Corresponding areas under the ROC curve for differentiation of benign (n = 16) and malignant (n = 49) lesions were 0.822 (ARFI) and 0.871 (DWI, p-value = 0.48). SWVmax and ADCmean values showed a significant negative correlation (ρ = −0.501, p-value Conclusion Significant correlation between quantitative findings of ARFI and DWI in breast lesions exists. Thus, ARFI provides similar diagnostic information as a DWI-including protocol of an additional "problem-solving" MRI for the characterization of a sonographically evident breast lesion, improving the immediate patient management in the assessment setting

    A survey by the European Society of Breast Imaging on radiologists' preferences regarding quality assurance measures of image interpretation in screening and diagnostic mammography

    Get PDF
    OBJECTIVES: Quality assurance (QA) of image interpretation plays a key role in screening and diagnostic mammography, maintaining minimum standards and supporting continuous improvement in interpreting images. However, the QA structure across Europe shows considerable variation. The European Society of Breast Imaging (EUSOBI) conducted a survey among the members to collect information on radiologists' preferences regarding QA measures in mammography. MATERIALS AND METHODS: An anonymous online survey consisting of 25 questions was distributed to all EUSOBI members and national breast radiology bodies in Europe. The questions were designed to collect demographic characteristics, information on responders' mammography workload and data about QA measures currently used in their country. Data was analysed using descriptive statistical analysis, the χ 2 test, linear regression, and Durbin-Watson statistic test. RESULTS: In total, 251 breast radiologists from 34 countries completed the survey. Most respondents were providing both screening and symptomatic services (137/251, 54.6%), working in an academic hospital (85/251, 33.9%) and reading 1000-4999 cases per year (109/251, 43.4%). More than half of them (133/251, 53%) had established QA measures in their workplace. Although less than one-third (71/251, 28.3%) had to participate in regular performance testing, the vast majority (190/251, 75.7%) agreed that a mandatory test would be helpful to improve their skills. CONCLUSION: QA measures were in place for more than half of the respondents working in screening and diagnostic mammography to evaluate their breast imaging performance. Although there were substantial differences between countries, the importance of having QA in the workplace and implemented was widely acknowledged by radiologists. CLINICAL RELEVANCE STATEMENT: Although several quality assurance (QA) measures of image interpretation are recommended by European bodies or national organisations, the QA in mammography is quite heterogenous between countries and reporting settings, and not always actively implemented across Europe. KEY POINTS: The first survey that presents radiologists' preferences regarding QA measures of image interpretation in mammography. Quality assurance measures in the workplace are better-established for breast screening compared to diagnostic mammography. Radiologists consider that performance tests would help to improve their mammography interpretation skills

    Fetal indusium griseum is a possible biomarker of the regularity of brain midline development in 3T MR imaging: A retrospective observational study

    Get PDF
    INTRODUCTION: This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS: The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS: The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS: The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements

    Axillary lymphadenopathy at the time of COVID-19 vaccination: ten recommendations from the European Society of Breast Imaging (EUSOBI).

    Get PDF
    Unilateral axillary lymphadenopathy is a frequent mild side effect of COVID-19 vaccination. European Society of Breast Imaging (EUSOBI) proposes ten recommendations to standardise its management and reduce unnecessary additional imaging and invasive procedures: (1) in patients with previous history of breast cancer, vaccination should be performed in the contralateral arm or in the thigh; (2) collect vaccination data for all patients referred to breast imaging services, including patients undergoing breast cancer staging and follow-up imaging examinations; (3) perform breast imaging examinations preferentially before vaccination or at least 12 weeks after the last vaccine dose; (4) in patients with newly diagnosed breast cancer, apply standard imaging protocols regardless of vaccination status; (5) in any case of symptomatic or imaging-detected axillary lymphadenopathy before vaccination or at least 12 weeks after, examine with appropriate imaging the contralateral axilla and both breasts to exclude malignancy; (6) in case of axillary lymphadenopathy contralateral to the vaccination side, perform standard work-up; (7) in patients without breast cancer history and no suspicious breast imaging findings, lymphadenopathy only ipsilateral to the vaccination side within 12 weeks after vaccination can be considered benign or probably-benign, depending on clinical context; (8) in patients without breast cancer history, post-vaccination lymphadenopathy coupled with suspicious breast finding requires standard work-up, including biopsy when appropriate; (9) in patients with breast cancer history, interpret and manage post-vaccination lymphadenopathy considering the timeframe from vaccination and overall nodal metastatic risk; (10) complex or unclear cases should be managed by the multidisciplinary team

    Image quality of DWI at breast MRI depends on the amount of fibroglandular tissue: implications for unenhanced screening

    Get PDF
    Objectives: To compare image quality of diffusion-weighted imaging (DWI) and contrast-enhanced breast MRI (DCE-T1) stratified by the amount of fibroglandular tissue (FGT) as a measure of breast density. Methods: Retrospective, multi-reader, bicentric visual grading analysis study on breast density (A–D) and overall image and fat suppression quality of DWI and DCE-T1, scored on a standard 5-point Likert scale. Cross tabulations and visual grading characteristic (VGC) curves were calculated for fatty breasts (A/B) versus dense breasts (C/D). Results: Image quality of DWI was higher in the case of increased breast density, with good scores (score 3–5) in 85.9% (D) and 88.4% (C), compared to 61.6% (B) and 53.5% (A). Overall image quality of DWI was in favor of dense breasts (C/D), with an area under the VGC curve of 0.659 (p < 0.001). Quality of DWI and DCE-T1 fat suppression increased with higher breast density, with good scores (score 3–5) for 86.9% and 45.7% of density D, and 90.2% and 42.9% of density C cases, compared to 76.0% and 33.6% for density B and 54.7% and 29.6% for density A (DWI and DCE-T1 respectively). Conclusions: Dense breasts show excellent fat suppression and substantially higher image quality in DWI images compared with non-dense breasts. These results support the setup of studies exploring DWI-based MR imaging without IV contrast for additional screening of women with dense breasts. Clinical relevance statement: Our findings demonstrate that image quality of DWI is robust in women with an increased amount of fibroglandular tissue, technically supporting the feasibility of exploring applications such as screening of women with mammographically dense breasts. Key Points: • Image and fat suppression quality of diffusion-weighted imaging are dependent on the amount of fibroglandular tissue (FGT) which is closely connected to breast density. • Fat suppression quality in diffusion-weighted imaging of the breast is best in women with a high amount of fibroglandular tissue. • High image quality of diffusion-weighted imaging in women with a high amount of FGT in MRI supports that the technical feasibility of DWI can be explored in the additional screening of women with mammographically dense breasts. Graphical Abstract: [Figure not available: see fulltext.]
    corecore