1,158 research outputs found

    Some exact analytical results and a semi-empirical formula for single electron ionization induced by ultrarelativistic heavy ions

    Get PDF
    The delta function gauge of the electromagnetic potential allows semiclassical formulas to be obtained for the probability of exciting a single electron out of the ground state in an ultrarelativistic heavy ion reaction. Exact formulas have been obtained in the limits of zero impact parameter and large, perturbative, impact parameter. The perturbative impact parameter result can be exploited to obtain a semi-empirical cross section formula of the form, sigma = A ln(gamma) + B, for single electron ionization. A and B can be evaluated for any combination of target and projectile, and the resulting simple formula is good at all ultrarelativistic energies. The analytical form of A and B elucidates a result previously found in numerical calculations: scaled ionization cross sections decrease with increasing charge of the nucleus being ionized. The cross section values obtained from the present formula are in good agreement with recent CERN SPS data from a Pb beam on various nuclear targets.Comment: 14 pages, latex, revtex source, no figure

    Ground-based variability surveys towards Centaurus A: worthwhile or not?

    Get PDF
    Context: Difference imaging has proven to be a powerful technique for detecting and monitoring the variability of unresolved stellar sources in M 31. Using this technique in surveys of galaxies outside the Local Group could have many interesting applications. Aims: The goal of this paper is to test difference imaging photometry on Centaurus A, the nearest giant elliptical galaxy, at a distance of 4 Mpc. Methods: We obtained deep photometric data with the Wide Field Imager at the ESO/MPG 2.2m at La Silla spread over almost two months. Applying the difference imaging photometry package DIFIMPHOT, we produced high-quality difference images and detected variable sources. The sensitivity of the current observational setup was determined through artificial residual tests. Results: In the resulting high-quality difference images, we detect 271 variable stars. We find a difference flux detection limit corresponding to m_R~24.5. Based on a simple model of the halo of Centaurus A, we estimate that a ground-based microlensing survey would detect in the order of 4 microlensing events per year due to lenses in the halo. Conclusions: Difference imaging photometry works very well at the distance of Centaurus A and promises to be a useful tool for detecting and studying variable stars in galaxies outside the local group. For microlensing surveys, a higher sensitivity is needed than achieved here, which would be possible with a large ground-based telescope or space observatory with wide-field imaging capabilities.Comment: 8 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Multipole Expansion for Relativistic Coulomb Excitation

    Get PDF
    We derive a general expression for the multipole expansion of the electro-magnetic interaction in relativistic heavy-ion collisions, which can be employed in higher-order dynamical calculations of Coulomb excitation. The interaction has diagonal as well as off-diagonal multipole components, associated with the intrinsic and relative coordinates of projectile and target. A simple truncation in the off-diagonal components gives excellent results in first-order perturbation theory for distant collisions and for beam energies up to 200 MeV/nucleon.Comment: 3 figures, Accepted for publication in Phys. Rev.

    Microlensing of gamma ray bursts by stars and MACHOs

    Full text link
    The microlensing interpretation of the optical afterglow of GRB 000301C seems naively surprising, since a simple estimate of the stellar microlensing rate gives less than one in four hundred for a flat Omega_Lambda=0.7 cosmology, whereas one event was seen in about thirty afterglows. Considering baryonic MACHOs making up half of the baryons in the universe, the microlensing probability per burst can be roughly 5% for a GRB at redshift z=2. We explore two effects that may enhance the probability of observing microlensed gamma-ray burst afterglows: binary lenses and double magnification bias. We find that the consideration of binary lenses can increase the rate only at the ~15% level. On the other hand, because gamma-ray bursts for which afterglow observations exist are typically selected based on fluxes at widely separated wavebands which are not necessarily well correlated (e.g. localization in X-ray, afterglow in optical/infrared), magnification bias can operate at an enhanced level compared to the usual single-bias case. We find that existing estimates of the slope of the luminosity function of gamma-ray bursts, while as yet quite uncertain, point to enhancement factors of more than three above the simple estimates of the microlensing rate. We find that the probability to observe at least one microlensing event in the sample of 27 measured afterglows can be 3-4% for stellar lenses, or as much as 25 Omega_lens for baryonic MACHOs. We note that the probability to observe at least one event over the available sample of afterglows is significant only if a large fraction of the baryons in the universe are condensed in stellar-mass objects. (ABRIDGED)Comment: 22 pages, 4 figures, 2 table

    Coulomb corrections and multiple e+e- pair production in ultra-relativistic nuclear collisions

    Full text link
    We consider the problem of Coulomb corrections to the inclusive cross section. We show that these corrections in the limiting case of small charge number of one of the nuclei coincide with those to the exclusive cross section. Within our approach we also obtain the Coulomb corrections for the case of large charge numbers of both nuclei.Comment: 7 pages, REVTeX

    A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We perform a gauge-transformation on the time-dependent Dirac equation describing the evolution of an electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction. We solve, in an ultra-relativistic limit, the gauged-transformed Dirac equation using light-front variables and a light-fronts representation, obtaining non-perturbative results for the free pair-creation amplitudes in the collider frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while non-perturbative effects arise for realistic charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR

    Bound-free pair production in ultra-relativistic ion collisions at the LHC collider: Analytic approach to the total and differential cross sections

    Get PDF
    A theoretical investigation of the bound-free electron-positron pair production in relativistic heavy ion collisions is presented. Special attention is paid to the positrons emitted under large angles with respect to the beam direction. The measurement of these positrons in coincidence with the down--charged ions is in principle feasible by LHC experiments. In order to provide reliable estimates for such measurements, we employ the equivalent photon approximation together with the Sauter approach and derive simple analytic expressions for the differential pair--production cross section, which compare favorably to the results of available numerical calculations. Based on the analytic expressions, detailed calculations are performed for collisions of bare Pb82+^{82+} ions, taking typical experimental conditions of the LHC experiments into account. We find that the expected count rate strongly depends on the experimental parameters and may be significantly enhanced by increasing the positron-detector acceptance cone.Comment: 10 pages, 4 figure

    Strong suppression of Coulomb corrections to the cross section of e+e- pair production in ultrarelativistic nuclear collisions

    Full text link
    The Coulomb corrections to the cross section of e+ee^+e^- pair production in ultrarelativistic nuclear collisions are calculated in the next-to-leading approximation with respect to the parameter L=lnγAγBL=\ln \gamma_A\gamma_B (γA,B\gamma_{A,B} are the Lorentz factors of colliding nuclei). We found considerable reduction of the Coulomb corrections even for large γAγB\gamma_A\gamma_B due to the suppression of the production of e+ee^+e^- pair with the total energy of the order of a few electron masses in the rest frame of one of the nuclei. Our result explains why the deviation from the Born result were not observed in the experiment at SPS.Comment: 4 pages, RevTe

    On the nature of Coulomb corrections to the e^+e^- pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We manifest the origin of the wrong conclusion made by several groups of authors on the absence of Coulomb corrections to the cross section of the e^+e^- pair production in ultrarelativistic heavy-ion collisions. The source of the mistake is connected with an incorrect passage to the limit in the expression for the cross section. When this error is eliminated, the Coulomb corrections do not vanish and agree with the results obtained within the Weizs\"acker-Williams approximation.Comment: 7 pages, LaTe
    corecore