18 research outputs found

    Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission

    Get PDF
    The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells,Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically ∌ 2–40 nm/s2 in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be ∌ 0.1–6 nm/s2 in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects. We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer. In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of ∌ 5 in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission

    Atmospheric Science with InSight

    Get PDF
    International audienceIn November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars

    Transient convection experiments in internally-heated systems

    No full text
    Radioactive decay of unstable isotopes is one of the main heat sources in the early stages of planetary formation as well as in the mantle of terrestrial planets. Laboratory studies characterized by Rayleigh and Prandtl numbers in the range relevant for planetary bodies had remained beyond the ability of the experimental approach until the development of a new technique based on microwave heating. Using this technique, we performed a series of experiments focused on the thermal evolution of an internally heated viscous fluid cooled from above. We established a steady-state scaling law relying the internal temperature variation to the Rayleigh number and we showed that this scaling law remains valid during the transitory regime provided both internal heating and secular evolution of the temperature are taken into account. The result is a parameterized model describing the average internal temperature of the fluid as a function of time in terms of experimental conditions and fluid properties. ‱ We generated a uniform and stable volume heat source in a large volume tank, based on absorption of microwaves guided through an innovative design of microwave circuits. ‱ Automatic laser scanning of the tank coupled with image acquisition and processing enables us the measurement of the 3D temperature field in the convective fluid from which we extracted the volume average temperature and surface heat flux evolution in time. ‱ We validated a transient scaling law for the time evolution of the volume average temperature in an internally-heated convective system

    Transient convection experiments in internally-heated systems

    No full text
    International audienceRadioactive decay of unstable isotopes is one of the main heat sources in the early stages of planetary formation as well as in the mantle of terrestrial planets. Laboratory studies characterized by Rayleigh and Prandtl numbers in the range relevant for planetary bodies had remained beyond the ability of the experimental approach until the development of a new technique based on microwave heating. Using this technique, we performed a series of experiments focused on the thermal evolution of an internally heated viscous fluid cooled from above. We established a steady-state scaling law relying the internal temperature variation to the Rayleigh number and we showed that this scaling law remains valid during the transitory regime provided both internal heating and secular evolution of the temperature are taken into account. The result is a parameterized model describing the average internal temperature of the fluid as a function of time in terms of experimental conditions and fluid properties

    Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

    No full text
    International audienceWe investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s(2) for rocky subsurface models and reaches 10-20 nm/s(2) for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocitie

    Pressure Effects on the SEIS‐InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements

    Get PDF
    International audienceMars atmospheric pressure variations induce ground displacements through elastic deformations. The various sensors of the InSight mission were designed in order to be able to understand and correct for these ground deformations induced by atmospheric effects. Particular efforts were made on one hand to avoid direct pressure and wind effects on the seismometer, and on the other hand to have a high performance pressure sensor operating in the same frequency range as the seismometer. As a consequence of these technical achievements and the low background seismic noise of Mars, the InSight mission is opening a new science domain in which the ground displacements can be used to perform atmospheric science. This study presents an analysis of pressure and seismic signals and the relations between them. After a short description of the pressure and seismic sensors, we present an analysis of these signals as a function of local time at the InSight location. Then, the coherent signals recorded by both pressure and seismic sensors are described and interpreted in terms of atmospheric signals and ground deformation processes. Two different methods to remove the pressure effects recorded by SEIS sensors are presented, and their efficiency is estimated and compared. These decorrelation methods allow the pressure generated noise to be reduced by a factor of two during the active day time period. Finally, an analysis of SEIS signals induced by gravity waves demonstrates the interest of ground displacement measurements to characterize their arrival azimuth

    VAMOS: a SmallSat mission concept for remote sensing of Venusian seismic activity from orbit

    No full text
    International audienceThe apparent youthfulness of Venus' surface features, given a lack of plate tectonics, is very intriguing; however, longduration seismic observations are essentially impossible given the inhospitable surface of Venus. The Venus Airglow Measurements and Orbiter for Seismicity (VAMOS) mission concept uses the fact that the dense Venusian atmosphere conducts seismic vibrations from the surface to the airglow layer of the ionosphere, as observed on Earth. Similarly, atmospheric gravity waves have been observed by the European Venus Express's Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument. Such observations would enable VAMOS to determine the crustal structure and ionospheric variability of Venus without approaching the surface or atmosphere. Equipped with an instrument of modest size and mass, the baseline VAMOS spacecraft is designed to fit within an ESPA Grande form factor and travel to Venus predominantly under its own power. Trade studies have been conducted to determine mission architecture robustness to launch and rideshare opportunities. The VAMOS mission concept was studied at JPL as part of the NASA Planetary Science Deep Space SmallSat Studies (PSDS3) program, which has not only produced a viable and exciting mission concept for a Venus SmallSat, but has also examined many issues facing the development of SmallSats for planetary exploration, such as SmallSat solar electric propulsion, autonomy, telecommunications, and resource management that can be applied to various inner solar system mission architectures
    corecore