395 research outputs found

    Valuing One's Self: Medial Prefrontal Involvement in Epistemic and Emotive Investments in Self-views.

    Full text link
    peer reviewedRecent neuroimaging research has revealed that the medial prefrontal cortex (MPFC) is consistently engaged when people form mental representations of themselves. However, the precise function of this region in self-representation is not yet fully understood. Here, we investigate whether the MPFC contributes to epistemic and emotive investments in self-views, which are essential components of the self-concept that stabilize self-views and shape how one feels about oneself. Using functional magnetic resonance imaging, we show that the level of activity in the MPFC when people think about their personal traits (by judging trait adjectives for self-descriptiveness) depends on their investments in the particular self-view under consideration, as assessed by postscan rating scales. Furthermore, different forms of investments are associated with partly distinct medial prefrontal areas: a region of the dorsal MPFC is uniquely related to the degree of certainty with which a particular self-view is held (one's epistemic investment), whereas a region of the ventral MPFC responds specifically to the importance attached to this self-view (one's emotive investment). These findings provide new insight into the role of the MPFC in self-representation and suggest that the ventral MPFC confers degrees of value upon the particular conception of the self that people construct at a given moment

    Offline Persistence of Memory-Related Cerebral Activity during Active Wakefulness

    Get PDF
    Much remains to be discovered about the fate of recent memories in the human brain. Several studies have reported the reactivation of learning-related cerebral activity during post-training sleep, suggesting that sleep plays a role in the offline processing and consolidation of memory. However, little is known about how new information is maintained and processed during post-training wakefulness before sleep, while the brain is actively engaged in other cognitive activities. We show, using functional magnetic resonance imaging, that brain activity elicited during a new learning episode modulates brain responses to an unrelated cognitive task, during the waking period following the end of training. This post-training activity evolves in learning-related cerebral structures, in which functional connections with other brain regions are gradually established or reinforced. It also correlates with behavioral performance. These processes follow a different time course for hippocampus-dependent and hippocampus-independent memories. Our experimental approach allowed the characterization of the offline evolution of the cerebral correlates of recent memories, without the confounding effect of concurrent practice of the learned material. Results indicate that the human brain has already extensively processed recent memories during the first hours of post-training wakefulness, even when simultaneously coping with unrelated cognitive demands

    Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson's disease

    Get PDF
    peer reviewedHighlights First whole-brain probabilistic tractography study in Parkinson's disease High quality diffusion-weighted images (120 gradient directions, b = 2500 s/mm2) Voxel-based group analysis comparing early-stage patients and controls Abnormal reconstructed track density in the nigrostriatal pathway and brainstem Track density also increased in limbic and cognitive circuits

    The Neural Substrates of Memory Suppression: A fMRI Exploration of Directed Forgetting

    Get PDF
    The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes

    The Influence of Radio-Frequency Transmit Field Inhomogeneities on the Accuracy of G-ratio Weighted Imaging

    Get PDF
    G-ratio weighted imaging is a non-invasive, in-vivo MRI-based technique that aims at estimating an aggregated measure of relative myelination of axons across the entire brain white matter. The MR g-ratio and its constituents (axonal and myelin volume fraction) are more specific to the tissue microstructure than conventional MRI metrics targeting either the myelin or axonal compartment. To calculate the MR g-ratio, an MRI-based myelin-mapping technique is combined with an axon-sensitive MR technique (such as diffusion MRI). Correction for radio-frequency transmit (B1+) field inhomogeneities is crucial for myelin mapping techniques such as magnetization transfer saturation. Here we assessed the effect of B1+ correction on g-ratio weighted imaging. To this end, the B1+ field was measured and the B1+ corrected MR g-ratio was used as the reference in a Bland-Altman analysis. We found a substantial bias (≈-89%) and error (≈37%) relative to the dynamic range of g-ratio values in the white matter if the B1+ correction was not applied. Moreover, we tested the efficiency of a data-driven B1+ correction approach that was applied retrospectively without additional reference measurements. We found that it reduced the bias and error in the MR g-ratio by a factor of three. The data-driven correction is readily available in the open-source hMRI toolbox (www.hmri.info) which is embedded in the statistical parameter mapping (SPM) framework

    Attention Supports Verbal Short-Term Memory via Competition between Dorsal and Ventral Attention Networks

    Get PDF
    Interactions between the neural correlates of short-term memory (STM) and attention have been actively studied in the visual STM domain but much less in the verbal STM domain. Here we show that the same attention mechanisms that have been shown to shape the neural networks of visual STM also shape those of verbal STM. Based on previous research in visual STM, we contrasted the involvement of a dorsal attention network centered on the intraparietal sulcus supporting task-related attention and a ventral attention network centered on the temporoparietal junction supporting stimulus-related attention. We observed that, with increasing STM load, the dorsal attention network was activated while the ventral attention network was deactivated, especially during early maintenance. Importantly, activation in the ventral attention network increased in response to task-irrelevant stimuli briefly presented during the maintenance phase of the STM trials but only during low-load STM conditions, which were associated with the lowest levels of activity in the dorsal attention network during encoding and early maintenance. By demonstrating a trade-off between task-related and stimulus-related attention networks during verbal STM, this study highlights the dynamics of attentional processes involved in verbal ST
    corecore