45 research outputs found

    Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Get PDF
    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios

    Thrombospondin-1 Contributes to Mortality in Murine Sepsis through Effects on Innate Immunity

    Get PDF
    BACKGROUND:Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. METHODOLOGY/PRINCIPAL FINDINGS:We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E. coli injection (i.p. E. coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1-/- animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1-/- mice after CLP. The survival advantage for TSP-1-/- animals persisted when i.p. E. coli injections were performed. TSP-1-/- BMMs had increased phagocytic capacity compared to WT. CONCLUSIONS:TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition

    Cardiac sodium channelopathies

    Get PDF
    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies

    Enhancement of HERG K(+) currents by Cd(2+) destabilization of the inactivated state

    Get PDF
    We have studied the functional effects of extracellular Cd(2+) on human ether-a-go-go-related gene (HERG) encoded K(+) channels. Low concentrations (10-200 &mgr;M) of extracellular Cd(2+) increased outward currents through HERG channels; 200 &mgr;M Cd(2+) more than doubled HERG currents and altered current kinetics. Cd(2+) concentrations up to 200 &mgr;M did not change the voltage dependence of channel activation, but shifted the voltage dependence of inactivation to more depolarized membrane potentials. Cd(2+) concentrations >/=500 &mgr;M shifted the voltage dependence of channel activation to more positive potentials. These results are consistent with a somewhat specific ability of Cd(2+) to destabilize the inactivated state. We tested the hypothesis that channel inactivation is essential for Cd(2+)-induced increases in HERG K(+) currents, using a double point mutation (G628C/S631C) that diminishes HERG inactivation (Smith, P. L., T. Baukrowitz, and G. Yellen. 1996. Nature (Lond.). 379:833-836). This inactivation-removed mutant is insensitive to low concentrations of Cd(2+). Thus, Cd(2+) had two distinct effects on HERG K(+) channels. Low concentrations of Cd(2+) caused relatively selective effects on inactivation, resulting in a reduction of the apparent rectification of the channel and thereby increasing HERG K(+) currents. Higher Cd(2+) concentrations affected activation gating as well, possibly by a surface charge screening mechanism or by association with a lower affinity site
    corecore