210 research outputs found

    Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers

    Get PDF
    We develop a theory for the thermodynamics of ion-containing polymer blends and diblock copolymers, taking polyethylene oxide (PEO), polystyrene and lithium salts as an example. We account for the tight binding of Li^+ ions to the PEO, the preferential solvation energy of anions in the PEO domain, the translational entropy of anions, and the ion-pair equilibrium between EO-complexed Li^+ and anion. Our theory is able to predict many features observed in experiments, particularly the systematic dependence in the effective χ parameter on the size of the anions. Furthermore, comparison with the observed linear dependence in the effective χ on salt concentration yields an upper limit for the binding constant of the ion pair

    Thermodynamic Properties of Block Copolymer Electrolytes Containing Imidazolium and Lithium Salts

    Get PDF
    We report on the thermal properties, phase behavior, and thermodynamics of a series of polystyrene-block-poly(ethylene oxide) copolymers (SEO) mixed with the ionic species Li[N(SO_(2)CF_3)_2] (LiTFSI), imidazolium TFSI (ImTFSI), and an equimolar mixture of LiTFSI and ImTFSI (Mix). Differential scanning calorimetric scans reveal similar thermal behavior of SEO/LiTFSI and SEO/ImTFSI at the same salt concentrations. Phase behavior and thermodynamics were determined using a combination of small-angle X-ray scattering and birefringence. The thermodynamics of our mixtures can be mapped on to the theory of neat block copolymer phase behavior provided the Flory−Huggins interaction parameter, χ, between the blocks is replaced by an effective χ (χ_(eff)) that increases linearly with salt concentration. The phase behavior and the value of m, the slope of the χ_(eff) versus salt concentration data, were similar for SEO/LiTFSI, SEO/ImTFSI, and SEO/Mix blends. The theory developed by Wang [ J. Phys. Chem. B. 2008, 41, 16205] provides a basis for understanding the fundamental underpinnings of the measured value of m. We compare our experimental results with the predictions of this theory with no adjustable parameters

    Cycling of block copolymer composites with lithium-conducting ceramic nanoparticles

    Get PDF
    Solid polymer and perovskite-type ceramic electrolytes have both shown promise in advancing solid-state lithium metal batteries. Despite their favorable interfacial stability against lithium metal, polymer electrolytes face issues due to their low ionic conductivity and poor mechanical strength. Highly conductive and mechanically robust ceramics, on the other hand, cannot physically remain in contact with redox-active particles that expand and contract during charge-discharge cycles unless excessive pressures are used. To overcome the disadvantages of each material, polymer-ceramic composites can be formed; however, depletion interactions will always lead to aggregation of the ceramic particles if a homopolymer above its melting temperature is used. In this study, we incorporate Li0.33La0.56TiO3 (LLTO) nanoparticles into a block copolymer, polystyrene-b-poly (ethylene oxide) (SEO), to develop a polymer-composite electrolyte (SEO-LLTO). TEMs of the same nanoparticles in polyethylene oxide (PEO) show highly aggregated particles whereas a significant fraction of the nanoparticles are dispersed within the PEO-rich lamellae of the SEO-LLTO electrolyte. We use synchrotron hard x-ray microtomography to study the cell failure and interfacial stability of SEO-LLTO in cycled lithium-lithium symmetric cells. Three-dimensional tomograms reveal the formation of large globular lithium structures in the vicinity of the LLTO aggregates. Encasing the SEO-LLTO between layers of SEO to form a “sandwich” electrolyte, we prevent direct contact of LLTO with lithium metal, which allows for the passage of seven-fold higher current densities without signatures of lithium deposition around LLTO. We posit that eliminating particle clustering and direct contact of LLTO and lithium metal through dry processing techniques is crucial to enabling composite electrolytes

    Lithium Dendrite Growth in Glassy and Rubbery Nanostructured Block Copolymer Electrolytes

    Get PDF
    Enabling the use of lithium metal anodes is a critical step required to dramatically increase the energy density of rechargeable batteries. However, dendrite growth in lithium metal batteries, and a lack of fundamental understanding of the factors governing this growth, is a limiting factor preventing their adoption. Herein we present the effect of battery cycling temperature, ranging from 90 to 120°C, on dendrite growth through a polystyrene-block-poly(ethylene oxide)-based electrolyte. This temperature range encompasses the glass transition temperature of polystyrene (107°C). A slight increase in the cycling temperature of symmetric lithium-polymer-lithium cells from 90 to 105°C results in a factor of five decrease in the amount of charge that can be passed before short circuit. Synchrotron hard X-ray microtomography experiments reveal a shift in dendrite location from primarily within the lithium electrode at 90°C, to primarily within the electrolyte at 105°C. Rheological measurements show a large change in mechanical properties over this temperature window. Time-temperature superposition was used to interpret the rheological data. Dendrite growth characteristics and cell lifetimes correlate with the temperature-dependent shift factors used for time-temperature superposition. Our work represents a step toward understanding the factors that govern lithium dendrite growth in viscoelastic electrolytes

    Effect of crystallization of the polyhedral oligomeric silsesquioxane block on self-assembly in hybrid organic-inorganic block copolymers with salt

    Get PDF
    [EN] We present a DSC and X-ray scattering study investigating the effect of polyhedral oligomeric silsesquioxane (POSS) block crystallinity on the self-assembly of a poly(acryloisobutyl polyhedral oligomeric silsesquioxane)- b -poly(ethylene oxide)- b -poly(acryloisobutyl polyhedral oligomeric silsesquioxane) (POSS-PEO-POSS) triblock copolymer and poly(ethylene oxide)- b - poly(acryloisobutyl polyhedral oligomeric silsesquioxane) (PEO-POSS) diblock copolymers mixed with lithium bis(trifluoromethanesulfonyl)imide salt. The POSS block in all copolymer/salt mixture organizes into a rhombohedral crystal, similar to that of the POSS homopolymer. Semicrystalline polymer/salt mixtures favor morphologies with flat interfaces ( i.e ., lamellae) despite the asymmetric nature of the copolymers; PEO/salt volume fractions range from 0 to 0.85. Coexisting lamellae and hexagonally packed cylinders as well as coexisting lamellae with different domain spacings are seen in many copolymer/salt mixtures wherein the POSS block is amorphous. Morphological phase transitions in these systems are seen in the vicinity of the POSS crystallization temperature.This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract DE-AC02- 05CH11231 under the Battery Materials Research Program. X-ray work performed at Advanced Light Source, which is a DOE Office of Science User Facility, was supported by Contract No. DE-AC02- 05CH11231 . X-ray work performed at the Stanford Synchrotron Radiation Light Source, a user facility at SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy , Office of Science, Office of Basic Energy Sciences under Contract No. DE- AC02-76SF00515 . Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE- AC02-05CH11231 . G.K.S. acknowledges funding from a National Science Foundation Graduate Student Research Fellowship

    Phase Behavior of a Block Copolymer/Salt Mixture through the Order-to-Disorder Transition

    Get PDF
    Mixtures of block copolymers and lithium salts are promising candidates for lithium battery electrolytes. Structural changes that occur during the order-to-disorder transition (ODT) in a diblock copolymer/salt mixture were characterized by small-angle X-ray scattering (SAXS). In salt-free block copolymers, the ODT is sharp, and the domain size of the ordered phase decreases with increasing temperature. In contrast, the ODT of the diblock copolymer/salt mixture examined here occurs gradually over an 11 °C temperature window, and the domain size of the ordered phase is a nonmonotonic function of temperature. We present an approach to estimate the fraction of the ordered phase in the 11 °C window where ordered and disordered phases coexist. The domain spacing of the ordered phase increases with increasing temperature in the coexistence window. Both findings are consistent with the selective partitioning of salt into the ordered domains, as predicted by Nakamura et al. ( ACS Macro Lett. 2013, 2, 478−481)

    Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    Get PDF
    This study describes hybrid single ion-conducting electrolytes based on inorganic sulfide glasses and perfluoropolyether polymers for lithium batteries. Herein, it is shown that hybrid electrolytes provide a compelling alternative to the traditional glass, ceramic, or polymer battery electrolytes. These electrolytes present high transference numbers, unprecedented ionic conductivities at room temperature, and excellent electrochemical stability, and they limit the dissolution of lithium polysulfides. The results in this work represent a significant step toward addressing the challenges of enabling the next generation cathodes, such as lithium nickel manganese cobalt oxide and sulfur

    Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes

    Get PDF
    We perform a joint experimental and computational study of ion transport properties in a systematic set of linear polyethers synthesized via acyclic diene metathesis (ADMET) polymerization. We measure ionic conductivity, σ, and glass transition temperature, T_g, in mixtures of polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. While T_g is known to be an important factor in the ionic conductivity of polymer electrolytes, recent work indicates that the number and proximity of lithium ion solvation sites in the polymer also play an important role, but this effect has yet to be systematically investigated. Here, adding aliphatic linkers to a poly(ethylene oxide) (PEO) backbone lowers T_g and dilutes the polar groups; both factors influence ionic conductivity. To isolate these effects, we introduce a two-step normalization scheme. In the first step, Vogel–Tammann–Fulcher (VTF) fits are used to calculate a temperature-dependent reduced conductivity, σ_r(T), which is defined as the conductivity of the electrolyte at a fixed value of T – T_g. In the second step, we compute a nondimensional parameter f_(exp), defined as the ratio of the reduced molar conductivity of the electrolyte of interest to that of a reference polymer (PEO) at a fixed salt concentration. We find that f_(exp) depends only on oxygen mole fraction, x_0, and is to a good approximation independent of temperature and salt concentration. Molecular dynamics simulations are performed on neat polymers to quantify the occurrences of motifs that are similar to those obtained in the vicinity of isolated lithium ions. We show that f_(exp) is a linear function of the simulation-derived metric of connectivity between solvation sites. From the relationship between σ_r and f_(exp) we derive a universal equation that can be used to predict the conductivity of ether-based polymer electrolytes at any salt concentration and temperature
    corecore