67 research outputs found

    IX

    Get PDF

    Yellow

    Get PDF

    Progress of the European Metrology Network for Advanced Manufacturing

    Get PDF
    The European Metrology Network (EMN) for Advanced Manufacturing has been established in June 2021. Currently nine EMNs focussing on different important topics of strategic importance for Europe exist and form an integral part of EURAMET, the European Association of National Metrology Institutes (NMI). All EMNs are tasked to develop a high-level coordination of the metrology community in Europe in a close dialogue with the respective stakeholders. The development of a Strategic Research Agenda (SRA) is a key task for all EMNs in their thematic areas as important input for the European Partnership on Metrology programme in alignment with other relevant European Partnerships. This task will be based on an analysis of the existing metrology infrastructure and capabilities of the NMIs, the metrology research needs for advanced manufacturing identified in close cooperation with industrial stakeholders and a resulting gap analysis. Here we report on the progress of the EMN for Advanced Manufacturing

    AdvManuNet: a networking project on metrology for advanced manufacturing

    Get PDF
    The networking project AdvManuNet has been started recently to accelerate the process of establishing an European Metrology Network (EMN) on Advanced Manufacturing. EMNs are intended by EURAMET, the association of metrology institutes in Europe, to provide a sustainable structure for ongoing stakeholder interaction in different thematic areas. Advanced manufacturing has been identified by the European Commission (EC) as one of six Key Enabling Technologies (KETs) with applications in multiple industries. Various EURAMET projects have partly addressed metrology needs for advanced manufacturing. However, a high-level coordination of the metrology community is currently absent and limits the impact of metrology developments on advanced manufacturing. AdvManuNet will address these limits by establishing a single hub for stakeholder consultation, a knowledge base on research results, and a strategic agenda for research and training to push forward advanced manufacturing and related KETs and strengthen Europe’s position in advanced manufacturing via the EMN

    New European Metrology Network for advanced manufacturing

    Get PDF
    Advanced manufacturing has been identified as one of the key enabling technologies with applications in multiple industries. The growing importance of advanced manufacturing is reflected by an increased number of publications on this topic in recent years. Advanced manufacturing requires new and enhanced metrology methods to assure the quality of manufacturing processes and the resulting products. However, a high-level coordination of the metrology community is currently absent in this field and consequently this limits the impact of metrology developments on advanced manufacturing. In this article we introduce the new European Metrology Network (EMN) for Advanced Manufacturing within EURAMET, the European Association of National Metrology Institutes (NMIs). The EMN is intended to be operated sustainably by NMIs and Designated Institutes in close cooperation with stakeholders interested in advanced manufacturing. The objectives of the EMN are to set up a permanent stakeholder dialogue, to develop a Strategic Research Agenda for the metrology input required for advanced manufacturing technologies, to create and maintain a knowledge sharing programme and to implement a web-based service desk for stakeholders. The EMN development is supported by a Joint Network Project within the European Metrology Programme for Innovation and Research

    Involving individuals with disorders of sex development and their parents in exploring new models of shared learning: Proceedings from a DSDnet COST Action workshop

    Get PDF
    The level of connection between health care professionals and people who experience a condition that affects sex development is variable. These people and associated support groups need to be included in discussions about research and healthcare delivery. The aim of this study was to understand the experiences of individuals with disorders of sexual development (DSD), their parents, health care providers, and support groups. Workshop planning, preparation, delivery, and evaluation involved members of working groups from the COST Action DSDnet. A coordinator, in collaboration with a support group representative, led the workshop design and delivery. Our successful, facilitated workshop involved 33 attendees from 8 EU countries. The workshop provided individuals with DSD, parents, advisory groups, and professionals with an opportunity for shared learning. Outputs focused on 7 key areas, including diagnosis, childhood, and transition to adult care as well as fostering discussion around registries, future research topics, consent processes, and information needs across the life course. The importance of trustworthy and knowledgeable providers, time to understand such rare conditions, and the place support groups have in a life course approach were valuable learning points for all attendees. In conclusion, workshops can be designed and delivered in meaningful ways for all those involved in care of individuals with rare conditions

    Addressing gaps in care of people with conditions affecting sex development and maturation

    Get PDF
    Differences of sex development are conditions with discrepancies between chromosomal, gonadal and phenotypic sex. In congenital hypogonadotropic hypogonadism, a lack of gonadotropin activity results primarily in the absence of pubertal development with prenatal sex development being (almost) unaffected in most patients. To expedite progress in the care of people affected by differences of sex development and congenital hypogonadotropic hypogonadism, the European Union has funded a number of scientific networks. Two Actions of the Cooperation of Science and Technology (COST) programmes - DSDnet (BM1303) and GnRH Network (BM1105) - provided the framework for ground-breaking research and allowed the development of position papers on diagnostic procedures and special laboratory analyses as well as clinical management. Both Actions developed educational programmes to increase expertise and promote interest in this area of science and medicine. In this Perspective article, we discuss the success of the COST Actions DSDnet and GnRH Network and the European Reference Network for Rare Endocrine Conditions (Endo-ERN), and provide recommendations for future research

    Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2

    No full text
    The increasing demand for energy and commodities has led to escalating greenhouse gas emissions, the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2), a low-carbon hydrogen produced from natural gas with carbon capture technologies applied, has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources, including refining, chemical, petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change, even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit, it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions, such as purge-to-feed ratio and desorption pressure, were evaluated in relation to CO2 purity, CO2 recovery, bed productivity and specific energy consumption. We found that conventional cycle configurations, namely a 2-bed, 4-step Skarstrom cycle and a 2-bed, 6-step modified Skarstrom cycle with pressure equalization, were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90%, respectively. Therefore, the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2

    Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2

    No full text
    The increasing demand for energy and commodities has led to escalating greenhouse gas emissions, the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2), a low-carbon hydrogen produced from natural gas with carbon capture technologies applied, has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources, including refining, chemical, petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change, even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit, it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions, such as purge-to-feed ratio and desorption pressure, were evaluated in relation to CO2 purity, CO2 recovery, bed productivity and specific energy consumption. We found that conventional cycle configurations, namely a 2-bed, 4-step Skarstrom cycle and a 2-bed, 6-step modified Skarstrom cycle with pressure equalization, were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90%, respectively. Therefore, the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2

    A generic middleware for external peripheral state retention in transiently-powered sensor systems

    No full text
    Sensor systems powered by energy harvesting usually include batteries or supercapacitors which impact the system cost and size, need time to be charged and are not environmentally friendly. In recent years, designers have proposed a new concept called transient computing that aims to remove these energy storage units and retain the system’s state between power outages, in order to cope with an unreliable energy source. However, existing approaches cannot retain the state of external peripherals or are specific to certain peripherals, i.e. they are not generic. This poster proposes a generic middleware, capable to retain the state of external peripherals that are connected to a microcontroller through SPI. The validation shows the proposed approach retains the peripheral configuration between power failures with a maximum time overhead of 15% when configuring the peripheral. However, this represents a 0.77% overhead for a complete example application, which is lower than that caused by existing approaches
    • …
    corecore