1,072 research outputs found

    Acute and Chronic Effects of Smoking on Inflammation Markers in Exhaled Breath Condensate in Current Smokers

    Get PDF
    Background: Long-term cigarette smoking is associated with pulmonary inflammation, but the acute effects of smoking have been less well studied. Analysis of the exhaled breath condensate (EBC) can provide noninvasive markers that might be indicative of inflammation. Objectives: The aim of the study was to determine whether the pH, electrical conductivity and the levels of ammonium and interleukin 8 (IL-8) of EBC were altered in smokers and whether they changed after smoking a single cigarette. Methods: We included 19 healthy nonsmokers (controls), 29 asymptomatic smokers, 10 patients with stable chronic obstructive pulmonary disease (COPD) {[}Global Initiative for Chronic Obstructive Lung Disease stages (GOLD) stages II-III], and 10 patients with exacerbated COPD. In 13 smokers, EBC was also analyzed before and after smoking. EBC was obtained during 10 min tidal breathing with a cooled RTube (TM). pH was determined after deaeration with argon. Results: Acute smoking did not alter the pH or ammonium and IL-8 levels, but raised conductivity. As in COPD patients, the pH was significantly decreased in chronic smokers with a history of at least 10 pack-years compared to controls. Conclusions: EBC can be used to detect the acute and chronic effects of smoking. The increased conductivity of EBC after smoking suggests acute inflammatory effects. The reduced pH in chronic smokers shows cigarette-induced inflammation. Copyright (C) 2009 S. Karger AG, Base

    On the relationship between proteinuria and plasma phosphate.

    Get PDF
    Albuminuria is strongly associated with renal and cardiovascular outcomes independently of renal function level. However, the pathophysiology of these associations is debated. In chronic kidney disease (CKD), phosphate retention participates in cardiovascular events and increased cardiovascular mortality. We hypothesised that albuminuria may modulate tubular phosphate handling by the kidney. To verify this hypothesis, we first studied the association between phosphataemia and albuminuria in children with nephrotic syndrome and in adults with CKD. In both cases, higher albuminuria was associated with higher phosphate level, independently of glomerular filtration rate. We further tried to decipher the molecular mechanisms of these observations. Using animal models of nephrotic proteinuria, we could show that albuminuric rats and mice had abnormally elevated sodium-phosphate apical co-transporter expression, despite elevated fibroblast growth factor 23 (FGF23). The FGF23 downstream pathway was inhibited despite elevated FGF23 levels. Klotho protein expression was also lower in proteinuric animals compared to controls. Finally, albumin had no direct effects on phosphate transport in cells. Altogether, we show that albuminuria induces alteration of phosphate tubular handling, independently of glomerular filtration rate. The mechanisms involved appear to include Klotho down-regulation and resistance to FGF23. This observation may link albuminuria to increased cardiovascular disease via altered phosphate handling. Finally, this observation opens up further opportunities to better understand the link between albuminuria, Klotho, FGF23 and phosphate handling

    Electronically coupled complementary interfaces between perovskite band insulators

    Full text link
    Perovskite oxides exhibit a plethora of exceptional electronic properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the two wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. In the latter case they are conceivably positively charged. For device applications, as well as for basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely-spaced complementary interfaces. Here we report the successful realization of such electronically coupled complementary interfaces in SrTiO3 - LaAlO3 thin film multilayer structures, in which the atomic stacking sequence at the interfaces was confirmed by quantitative transmission electron microscopy. We found a critical separation distance of 6 perovskite unit cell layers, corresponding to approximately 2.3 nm, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate electron doped interfaces are found to be maintained in coupled structures down to sub-nanometer interface spacing

    Atomic Layer Deposition-Based Synthesis of Photoactive TiO2 Nanoparticle Chains by Using Carbon Nanotubes as Sacrificial Templates

    Full text link
    Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles (~12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photo active under UV light because of their well crystallized anatase phase

    Synthesis of a 3D network of Pt nanowires by atomic layer deposition on carbonaceous template

    Full text link
    The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). These characterizations showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50

    Isolation of human β-defensin-4 in lung tissue and its increase in lower respiratory tract infection

    Get PDF
    BACKGROUND: Human β-defensin-4 (hBD-4), a new member of the β-defensin family, was discovered by an analysis of the genomic sequence. The objective of this study was to clarify hBD-4 expression in human lung tissue, along with the inducible expression in response to infectious stimuli, localization, and antimicrobial activities of hBD-4 peptides. We also investigated the participation of hBD-4 in chronic lower respiratory tract infections (LRTI) by measuring the concentrations of hBD-4 peptides in human bronchial epithelial lining fluid (ELF). METHODS: The antimicrobial activity of synthetic hBD-4 peptides against E. coli and P. aeruginosa was measured by radial diffusion and colony count assays. We identified hBD-4 in homogenated human lung tissue by reverse-phase high-performance liquid chromatography coupled with a radioimmunoassay (RIA). Localization of hBD-4 was studied through immunohistochemical analysis (IHC). We investigated the effects of lipopolysaccharide (LPS) on hBD-4 expression and its release from small airway epithelial cells (SAEC). We collected ELF from patients with chronic LRTI using bronchoscopic microsampling to measure hBD-4 concentrations by RIA. RESULTS: hBD-4 exhibited salt-sensitive antimicrobial activity against P. aeruginosa. We detected the presence of hBD-4 peptides in human lung tissue. IHC demonstrated the localization of hBD-4-producing cells in bronchial and bronchiolar epithelium. The levels of hBD-4 peptides released from LPS-treated SAECs were higher than those of untreated control cells. ELF hBD-4 was detectable in 4 of 6 patients with chronic LRTI, while the amounts in controls were all below the detectable level. CONCLUSION: This study suggested that hBD-4 plays a significant role in the innate immunity of the lower respiratory tract

    Optimized fabrication of high quality La0.67Sr0.33MnO3 thin films considering all essential characteristics

    Full text link
    In this article, an overview of the fabrication and properties of high quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 {\mu}B/Mn, a Curie temperature of 350 K and a residual resistivity of 60 {\mu}{\Omega}cm. These results indicate that high quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high quality films, all properties have to be adressed. For LSMO devices, the thin film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.Comment: Accepted for publication in Journal of Physics D - Applied Physic

    Controlling the formation and stability of ultra-thin nickel silicides : an alloying strategy for preventing agglomeration

    Get PDF
    The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of t(c) = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 degrees C, thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness t(c). The results are discussed in the framework of classical nucleation theory
    corecore