164 research outputs found

    Luttinger theorem for the strongly correlated Fermi liquid of composite fermions

    Get PDF
    While an ordinary Fermi sea is perturbatively robust to interactions, the paradigmatic composite-fermion (CF) Fermi sea arises as a non-perturbative consequence of emergent gauge fields in a system where there was no Fermi sea to begin with. A mean-field picture suggests two Fermi seas, of composite fermions made from electrons or holes in the lowest Landau level, which occupy different areas away from half filling and thus appear to represent distinct states. We show that in the microscopic theory of composite fermions, which satisfies particle-hole symmetry in the lowest Landau level to an excellent degree, the Fermi wave vectors at filling factors ν\nu and 1−ν1-\nu are the same, and are generally consistent with the experimental findings of Kamburov {\em et al.} [Phys. Rev. Lett. {\bf 113}, 196801 (2014)]. Our calculations suggest that the area of the CF Fermi sea may slightly violate the Luttinger area rule.Comment: 21 pages, 17 figures including supplemental material, published versio

    Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multi-Component Systems

    Get PDF
    While the integer quantum Hall effect of composite fermions manifests as the prominent fractional quantum Hall effect (FQHE) of electrons, the FQHE of composite fermions produces further, more delicate states, arising from a weak residual interaction between composite fermions. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu {\em et al.} \cite{Liu14a,Liu14b} of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of composite fermions is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N{\cal N} components for an SU(N{\cal N}) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. The aim of this article is to provide a fairly comprehensive list of possible incompressible fractional quantum Hall states of composite fermions, their SU(N{\cal N}) spin content, their energies, and their phase diagram as a function of the generalized "Zeeman" energy. We obtain results at three levels of approximation: from ground state wave functions of the composite fermion theory, from composite fermion diagonalization, and, whenever possible, from exact diagonalization. Effects of finite quantum well thickness and Landau level mixing are neglected in this study. We compare our theoretical results with the experiments of Liu {\em et al.} \cite{Liu14a,Liu14b} as well as of Yeh {\em et al.} \cite{Yeh99} for a two component system.Comment: 29 pages, 6 figure

    Prediction of a non-Abelian fractional quantum Hall state with ff-wave pairing of composite fermions in wide quantum wells

    Get PDF
    We theoretically investigate the nature of the state at quarter filled lowest Landau level and predict that, as the quantum well width is increased, a transition occurs from the composite fermion Fermi sea into a novel non-Abelian fractional quantum Hall state that is topologically equivalent to ff-wave pairing of composite fermions. This state is topologically distinct from the familiar pp-wave paired Pfaffian state. We compare our calculated phase diagram with experiments and make predictions for many observable quantities

    Moving boundary and photoelastic coupling in GaAs optomechanical resonators

    Get PDF
    Chip-based cavity optomechanical systems are being considered for applications in sensing, metrology, and quantum information science. Critical to their development is an understanding of how the optical and mechanical modes interact, quantified by the coupling rate g0g_{0}. Here, we develop GaAs optomechanical resonators and investigate the moving dielectric boundary and photoelastic contributions to g0g_{0}. First, we consider coupling between the fundamental radial breathing mechanical mode and a 1550 nm band optical whispering gallery mode in microdisks. For decreasing disk radius from R=5R=5 μ\mum to R=1R=1 μ\mum, simulations and measurements show that g0g_{0} changes from being dominated by the moving boundary contribution to having an equal photoelastic contribution. Next, we design and demonstrate nanobeam optomechanical crystals in which a 2.52.5 GHz mechanical breathing mode couples to a 1550 nm optical mode predominantly through the photoelastic effect. We show a significant (30 %\%) dependence of g0g_{0} on the device's in-plane orientation, resulting from the difference in GaAs photoelastic coefficients along different crystalline axes, with fabricated devices exhibiting g0/2πg_{\text{0}}/2\pi as high as 1.1 MHz for orientation along the [110] axis. GaAs nanobeam optomechanical crystals are a promising system which can combine the demonstrated large optomechanical coupling strength with additional functionality, such as piezoelectric actuation and incorporation of optical gain media
    • …
    corecore