14 research outputs found

    Protein Kinase D1 Maintains the Epithelial Phenotype by Inducing a DNA-Bound, Inactive SNAI1 Transcriptional Repressor Complex

    Get PDF
    Protein kinase D1 is downregulated in its expression in invasive ductal carcinoma of the breast and in invasive breast cancer cells, but its functions in normal breast epithelial cells is largely unknown. The epithelial phenotype is maintained by cell-cell junctions formed by E-cadherin. In cancer cells loss of E-cadherin expression contributes to an invasive phenotype. This can be mediated by SNAI1, a transcriptional repressor for E-cadherin that contributes to epithelial-to-mesenchymal transition (EMT).Here we show that PKD1 in normal murine mammary gland (NMuMG) epithelial cells is constitutively-active in its basal state and prevents a transition to a mesenchymal phenotype. Investigation of the involved mechanism suggested that PKD1 regulates the expression of E-cadherin at the promoter level through direct phosphorylation of the transcriptional repressor SNAI1. PKD1-mediated phosphorylation of SNAI1 occurs in the nucleus and generates a nuclear, inactive DNA/SNAI1 complex that shows decreased interaction with its co-repressor Ajuba. Analysis of human tissue samples with a newly-generated phosphospecific antibody for PKD1-phosphorylated SNAI1 showed that regulation of SNAI1 through PKD1 occurs in vivo in normal breast ductal tissue and is decreased or lost in invasive ductal carcinoma.Our data describe a mechanism of how PKD1 maintains the breast epithelial phenotype. Moreover, they suggest, that the analysis of breast tissue for PKD-mediated phosphorylation of SNAI1 using our novel phosphoS11-SNAI1-specific antibody may allow predicting the invasive potential of breast cancer cells

    Halstead’s Complexity Measure of a Merge Sort and Modified Merge Sort Algorithms

    Get PDF
    Complexity measuring tools in computer science are deployed to measure and compare different characteristics of algorithms to find the best one to solve a particular problem or that suits a specific situation. Also,  this is used to measure the complexity of a software program without running the program itself. Given this, Halstead’s complexity metrics are deployed to compare the efficiency of two external sorting methods: the Merge Sort and the Modified Merge Sort Algorithms. The methodology used in achieving this lies in extracting operators and operands from the C_sharp (C#) implemented program of the two algorithms. Six Halstead metrics are evaluated using these operators and operands as parameters. The results show that the modified merge sort algorithm is much more efficient than the conventional Merge sort as it has a lower Program Volume, Program Difficulty, and Program Effort even though the advantage of a higher Intelligence content goes to the merge sort algorithm

    Apert Syndrome in Lagos – a Case Report and Literature Review

    No full text
    Apert Syndrome is a rare autosomal dominant disorder characterized by premature fusion of sutures of bones of the skull (Craniosynostosis), fingers and toes (Syndactyly) to different degree. Though it is rare, it is pertinent for clinicians to know about this condition so as to improve their ability to manage it and to note that management is multidisciplinary. We present a case of Apert Syndrome in a one month old Nigerian female, and one of a set of twins that presented with proptosis, hypertelorism, high arched palate and fusion of bones of fingers and toes.Keyword: Apert syndrome, craniosynostosis, proptosis, hypertelorismNigerian Medical Practitioner Vol. 63 No 1-2, 201

    Phosphorylation of SNAI1 by PKD1 occurs in the nucleus and does not alter its localization.

    No full text
    <p><b>A:</b> Immunofluorescence staining of NMuMG cells for endogenous PKD1 (anti-PKD1). The bar represents 10 µm. <b>B:</b> Immunofluorescence staining of NMuMG cells for S11-phosphorylated SNAI1 (anti-pS11-SNAI1) in absence or presence of competing phospho-S11-peptide and nuclei (DAPI). The bar represents 10 µm. <b>C:</b> HeLa cells were transfected as indicated and nuclear extracts were prepared and analyzed by Western blot for SNAI1 (anti-FLAG), pS11-SNAI1 (anti-pS11-SNAI1) and nucleolin (anti-nucleolin, loading control). <b>D:</b> NMuMG cells were transfected with GFP control, GFP-SNAI1, GFP-SNAI1.S11A or GFP-SNAI1.S11E mutants. Localization of GFP or GFP-tagged proteins was determined using immunofluorescence analysis (bar is 10 µm). <b>E:</b> NMuMG cells were transfected with FLAG-tagged wildtype SNAI1 or SNAI1.S11A mutant and GFP-tagged, active PKD1 (PKD1.CA) as indicated and localization of SNAI1 was determined by indirect immunofluorescence staining (anti-FLAG as primary antibody). The bar represents 10 µm.</p

    Loss of nuclear PKD activity and SNAI1 phosphorylation at S11 are markers for invasive breast cancer.

    No full text
    <p>Tissue microarrays (TMAs) including 10 normal breast tissue samples, 40 invasive ductal carcinoma of the breast and 10 metastatic invasive ductal carcinoma samples from lymph nodes were H&E stained or analyzed for the expression of active PKD (anti-pY95-PKD), S11-phosphorylated SNAI1 (anti-pS11-SNAI1) and total SNAI1 (anti-SNAI1). Representative pictures of normal (<b>A–D</b>) and 3 tumor tissues (<b>E–P</b>) are depicted. Numbers indicate the position of the tissue on the TMA. The asterisk (sample #10) indicates tumor tissue form a region adjacent to the normal tissue (same patient). Inserts show enhanced area.</p

    PKD regulates E-cadherin expression in epithelial cells.

    No full text
    <p><b>A:</b> NMuMG cells were transfected with GFP-tagged, kinase-dead PKD1 (PKD1.KD) and endogenous expression of E-cadherin was determined with immunofluorescence staining (anti-E-cadherin). DAPI staining served as a nuclear marker (bar is 50 µm). <b>B:</b> MCF-7 cells were transfected with vector control, HA-tagged PKD1 or kinase-dead PKD1 (PKD1.KD). After 48 hours, samples were analyzed by Western blot for E-cadherin expression (anti-E-cadherin) as well as expression of PKD1 (anti-PKD1). Staining for actin (anti-actin) served as loading control. <b>C:</b> MCF-7 cells were transfected with vector control, HA-tagged constitutively-active PKD1 (PKD1.CA) or kinase-dead PKD1 (PKD1.KD) as well as E-cadherin promoter luciferase gene reporter and renilla luciferase reporter. Induced luciferase activity was measured. Error bars shown represent standard deviations. The asterisks indicate statistical significance (p<0.05) as compared to vector control.</p

    PKD1 conserves the epithelial phenotype in normal mammary gland cells.

    No full text
    <p><b>A:</b> NMuMG cells were either left untreated or were treated with TGFβ1 (10 ng/ml) for 48 hours. Cell morphology was photographed (bar is 200 µm) and cells were harvested and analyzed for expression of epithelial (E-cadherin, cytokeratin) and mesenchymal (N-cadherin) markers by Western blotting with anti-N-cadherin, anti-E-cadherin, or anti-cytokeratin antibodies. Staining for actin (anti-actin) served as a loading control. <b>B:</b> NMuMG cells were treated with TGFβ1 (10 ng/ml) for 24 hours. Endogenous PKD1 was immunoprecipitated (anti-PKD1) and analyzed for phosphorylation at its activation loop that correlates with its activity (anti-pS738/742-PKD), or samples were control stained for total PKD1 (anti-PKD1). <b>C:</b> Cells were stimulated with PMA (100 nM, 10 min), EGF (50 ng/ml, 10 min), Bradykinin (0.5 µg/ml, 10 min) or left untreated. Endogenous PKD1 was immunoprecipitated and subjected to an <i>in vitro</i> kinase assay using PKD substrate peptide. PKD1 activity is depicted relative to PMA-activated PKD1 (maximum activation). Equal immunoprecipitation was controlled by SDS-PAGE and immunoblot (anti-PKD1). <b>D:</b> NMuMG cells were either transfected with control vector or with active PKD1 (PKD1.CA, PKD1.S738E.S742E). 24 hours after transfection, cells were treated with TGFβ1 (10 ng/ml) for 24 hours. Lysates were analyzed for expression of N-cadherin, E-cadherin, expression of PKD1, or actin as a loading control. <b>E:</b> NMuMG cells were stably-transfected with vector control, wildtype PKD1 or kinase-dead PKD1.K612W (PKD1.KD) Cell morphology was analyzed by brightfield microscopy (bar is 200 µm). Expression of endogenous and overexpressed PKD1 was determined by Western blot analysis using an anti-PKD1 antibody. Immunoblotting for actin (anti-actin) served as loading control.</p

    Active PKD1 directly phosphorylates SNAI1 at S11.

    No full text
    <p><b>A:</b> The amino-acids surrounding serine 11 in SNAI1 form a PKD consensus motif as it was described for S82 of Hsp27 and S978 of SSH1L. <b>B:</b> PKD phosphorylates SNAI1 at S11 in an <i>in vitro</i> assay. Bacterially-expressed and purified GST (negative control), GST-SNAI1 or GST-SNAI1.S11A were incubated in a kinase reaction with purified active PKD1. Substrate phosphorylation was detected using the pMOTIF antibody, which recognizes the phosphorylated PKD motif in PKD substrates <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030459#pone.0030459-Doppler1" target="_blank">[45]</a> or with the novel pS11-SNAI1 antibody specifically generated for this site. Control blots were performed for protein input (anti-PKD1, anti-GST). <b>C, D:</b> HeLa cells were transfected with combinations of vector control, active PKD1 (PKD1.CA) and SNAI1 or SNAI1.S11A mutant as indicated. PKD-mediated phosphorylation of SNAI1 was detected using the pMOTIF (C) or the pS11-SNAI1 (D) antibodies. <b>E, F:</b> HeLa cells were transfected with combinations of vector control, active RhoA (RhoA.CA) and PKD1 or PKD1.KD mutant (E) or control shRNA and shRNA specific for PKD1/2 (F) as indicated and FLAG-tagged SNAI1. PKD-mediated phosphorylation of SNAI1 was detected using the pS11-SNAI1 antibody. Samples were also control-stained for SNAI1 and PKD1 expression using anti-FLAG or anti-PKD1 antibodies, respectively. Anti-GST control staining for RhoA.CA and GST control are depicted in <b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030459#pone.0030459.s002" target="_blank">Figure S2</a></b>. <b>G:</b> NMuMG cells were treated with TGFβ1 (10 ng/ml) for 48 hours. Total cell lysates were analyzed for phosphorylation of endogenous SNAI1 at S11 (anti-pS11-SNAI1) or PKD1 activity (anti-pS738/742-PKD) or total PKD1 expression (anti-PKD1) as indicated. <b>H:</b> NMuMG cells were treated with CID755673 (25 µM, 4 hr) or left untreated as indicated. Total cell lysates were analyzed for phosphorylation of endogenous SNAI1 at S11 (anti-pS11-SNAI1) or SNAI1 expression (anti-SNAI1).</p

    Phosphorylation of SNAI1 decreases its binding to Ajuba.

    No full text
    <p><b>A:</b> HeLa cells were co-transfected with MYC-tagged Ajuba and vector control, and FLAG-tagged wildtype SNAI1, SNAI1.S11A or SNAI1.S11E mutants as indicated. Ajuba was immunoprecipitated (anti-MYC) and precipitates were analyzed for co-precipitated SNAI1 (anti-FLAG). Samples were re-stained for Ajuba (anti-MYC) and lysates were control-stained for expressed SNAI1 (anti-FLAG). <b>B:</b> Proposed mechanism of how PKD1-mediated phosphorylation regulates SNAI1 function as a transcriptional repressor of E-cadherin gene expression.</p
    corecore