102 research outputs found

    Interaction of atopy and smoking on respiratory effects of occupational dust exposure: a general population-based study

    Get PDF
    BACKGROUND: For individual exposures, effect modification by atopy or smoking has been reported on the occurrence of occupational airway disease. It is unclear if effect modification can be studied in a general population by an aggregated exposure measure. Assess relationship between airway obstruction and occupational exposure using a job-exposure-matrix (JEM) classifying jobs into 3 broad types of exposure, and test for effect modification by atopy, and smoking. METHODS: Data from 1,906 subjects were analyzed, all participants of the European Community Respiratory Health Survey. Job titles were categorized by an a priori constructed job exposure matrix into three classes of exposure to respectively organic dust, mineral dust, and gases/ fumes. Relationships were assessed for 'current wheeze', bronchial hyperresponsiveness (BHR), 'current asthma' (wheeze+BHR), and 'chronic bronchitis' (morning phlegm or morning cough), and lung function. RESULTS: Subjects with organic dust exposure in their work environment more frequently had 'current asthma' (OR 1.48, 95% C.I. 0.95;2.30), and a lower FEV(1 )(-59 mL, 95% C.I. -114;-4). The relationship was only present in asthmatic workers, and their risk was four-fold greater than in subjects with either atopy or exposure alone. Mineral dust exposure was associated with 'chronic bronchitis' (OR 2.22, 95% C.I. 1.16;4.23) and a lower FEV(1)/FVC ratio (-1.1%, 95% C.I. -1.8;-0.3). We observed an excess risk in smokers, greater than the separate effects of smoking or mineral dust exposure together. CONCLUSION: Occupational exposure to organic dust is associated with an increased risk of asthma, particularly in atopics. Chronic bronchitis occurs more frequently among individuals exposed to mineral dust, and smoking doubles this risk

    Cardiopulmonary Impact of Particulate Air Pollution in High-Risk Populations: JACC State-of-the-Art Review

    Get PDF
    Fine particulate air pollution <2.5 μm in diameter (PM(2.5)) is a major environmental threat to global public health. Multiple national and international medical and governmental organizations have recognized PM(2.5) as a risk factor for cardiopulmonary diseases. A growing body of evidence indicates that several personal-level approaches that reduce exposures to PM(2.5) can lead to improvements in health endpoints. Novel and forward-thinking strategies including randomized clinical trials are important to validate key aspects (e.g., feasibility, efficacy, health benefits, risks, burden, costs) of the various protective interventions, in particular among real-world susceptible and vulnerable populations. This paper summarizes the discussions and conclusions from an expert workshop, Reducing the Cardiopulmonary Impact of Particulate Matter Air Pollution in High Risk Populations, held on May 29 to 30, 2019, and convened by the National Institutes of Health, the U.S. Environmental Protection Agency, and the U.S. Centers for Disease Control and Prevention
    • …
    corecore