49 research outputs found

    Human influence strengthens the contrast between tropical wet and dry regions

    Get PDF
    Climate models predict a strengthening contrast between wet and dry regions in the tropics and subtropics (30 °S–30 °N), and data from the latest model intercomparison project (CMIP6) support this expectation. Rainfall in ascending regions increases, and in descending regions decreases in climate models, reanalyses, and observational data. This strengthening contrast can be captured by tracking the rainfall change each month in the wettest and driest third of the tropics and subtropics combined. Since wet and dry regions are selected individually every month for each model ensemble member, and the observations, this analysis is largely unaffected by biases in location of precipitation features. Blended satellite and in situ data from 1988–2019 support the CMIP6-model-simulated tendency of sharpening contrasts between wet and dry regions, with rainfall in wet regions increasing substantially opposed by a slight decrease in dry regions. We detect the effect of external forcings on tropical and subtropical observed precipitation in wet and dry regions combined, and attribute this change for the first time to anthropogenic and natural forcings separately. Our results show that most of the observed change has been caused by increasing greenhouse gases. Natural forcings also contribute, following the drop in wet-region precipitation after the 1991 eruption of Mount Pinatubo, while anthropogenic aerosol effects show only weak trends in tropic-wide wet and dry regions consistent with flat global aerosol forcing over the analysis period. The observed response to external forcing is significantly larger ( p > 0.95) than the multi-model mean simulated response. As expected from climate models, the observed signal strengthens further when focusing on the wet tail of spatial distributions in both models and data

    Assessing the impact of very large volcanic eruptions on the risk of extreme climate events

    Get PDF
    Very large volcanic eruptions have substantial impacts on the climate, causing global cooling and major changes to the hydrological cycle. While most studies have focused on changes to mean climate, here we use a large ensemble to assess the impact on extreme climate for three years following tropical and extratropical eruptions of different sulfur emission strength. We focus on the impact of an extremely large eruption, injecting 40 Tg sulfur into the stratosphere, which could be expected to occur approximately twice a millennium. Our findings show that the eruption would have a profound effect on large areas of the globe, resulting in extremely rare drought events that under normal circumstances would occur once every century becoming very likely. Several regions such as West Africa, South and East Asia and the Maritime continent are particularly affected with the expected climate shifting well outside the usual range, by up to five standard deviations. These results have important consequences as they indicate that a severe drought in multiple breadbasket regions should be expected following a large eruption. The risk of heavy rainfall tends to decrease over the same regions but by a reduced amount, heatwaves become extremely rare, however the chance of extreme Winter cold surges do not increase by a corresponding amount, since widespread parts of the Northern Hemisphere display a winter warming. Our results show that the location of the eruption is crucial for the change in extremes, with overall changes larger for a Northern Hemisphere eruption than a tropical and Southern Hemisphere eruption, although there is a regional dependency. Simulations of different eruptions with similar forcing distributions but with different sizes are consistent with a linear relationship, however for smaller eruptions the internal variability tends to become dominant and the effect on extreme climate less detectable

    Assessing observational constraints on future European climate in an out-of-sample framework

    Get PDF
    Observations are increasingly used to constrain multi-model projections for future climate assessments. This study assesses the performance of five constraining methods, which have previously been applied to attempt to improve regional climate projections from CMIP5-era models. We employ an out-of-sample testing approach to assess the efficacy of these constraining methods when applied to “pseudo-observational” datasets to constrain future changes in the European climate. These pseudo-observations are taken from CMIP6 simulations, for which future changes were withheld and used for verification. The constrained projections are more accurate and broadly more reliable for regional temperature projections compared to the unconstrained projections, especially in the summer season, which was not clear prior to this study. However, the constraining methods do not improve regional precipitation projections. We also analysed the performance of multi-method projections by combining the constrained projections, which are found to be competitive with the best-performing individual methods and demonstrate improvements in reliability for some temperature projections. The performance of the multi-method projection highlights the potential of combining constraints for the development of constraining methods

    Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

    Get PDF
    The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc

    Melanesian mtDNA Complexity

    Get PDF
    Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at ∼30–50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval ∼3,500–8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved
    corecore