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Abstract

Providing comprehensive regional- and local-scale information on changes

observed in the climate system plays a vital role in planning effective and effi-

cient climate change adaptation options, specifically over resource-limited

regions. Here, we assess changes in temperature and heat waves over different

regions of the African continent, with a focus on spatiotemporal trends and the

time of emergence of change in hot extremes from natural variability. We ana-

lyse absolute and relative threshold indices. Data sets include temperatures

from observations (CRUTS4.03 and BEST) and from three representative state-

of-the-art reanalyses (ERA5, MERRA2 and JRA-55) for the common period

1980–2018. Statistically significant warming is observed over all regions of

Africa in temperature time series from CRU observations and reanalysis data,

although the trend strength varies between data sets. Also, extreme tempera-

tures and heat wave indices from BEST observations and all reanalysis data sets

reveal increasing trends over all regions of the African continent. However,

there are differences in both trend strength and time evolution of heat wave

indices between different reanalysis data sets. Most data sets agree in identify-

ing 2010 as a peak heat year over Northern and Western Africa while Eastern

and Southern Africa experienced the highest heat wave occurrence in 2016.

Our results clearly reveal that heat wave occurrences have emerged from natu-

ral climate variability in Africa. The earliest time of emergence takes place in

the Northern Africa region in the early 2000s while in the other African regions

emergence over natural variability is found mainly after 2010. This also

depends on the respective index metrics, where indices based on more consecu-

tive days show later emergence of heat wave trends. Overall, significant

warming and an increase in heat wave occurrence is found in all regions of

Africa and has emerged from natural variability in the past one or two decades.
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1 | INTRODUCTION

The Earth's climate system is warming unequivocally,
largely due to human influences (IPCC, 2014). Anthropo-
genic climate change alters the temperature distribution
in terms of variability and mean, which further causes
changes in temperature extremes and heat waves. In
addition to temperature, also humidity, wind and inci-
dent radiation play a role in altering the occurrence and
characteristics of heat waves (Russo et al., 2017;
Sherwood, 2018; Largeron et al., 2020; Li et al., 2020).
The occurrence and intensity of heat waves has changed
since the 1950s (Seneviratne et al., 2012), reported for dif-
ferent parts of the world (Kuglitsch et al., 2010; Smith
et al., 2013; Cowan et al., 2014; Rohini et al., 2016; Liao
et al., 2018), as well as their duration and spatial extent
(Oueslati et al., 2017), specifically impacting Africa.

Anthropogenic driven warming often manifests its
damaging effects through weather- and climate-related
temperature extremes. Heat waves are one of the deadli-
est natural disasters. Increase in intensity and frequency
of heat wave events contribute to loss of human lives and
crop damages. Heat waves lead to large socioeconomic
impacts comprising agriculture, infrastructure, energy
consumption and supply and other sectors (Lobell
et al., 2011; Coumou and Rahmstorf, 2012; Chapman
et al., 2013; Perkins, 2015). Heat waves impact human
health and increase morbidity and mortality of people,
especially the most vulnerable population. In the years
between 1999 and 2009, 11,000 excess hospitalizations
were reported due to extreme heat in California
(Guirguis et al., 2014), whereas the 2003 European heat
wave caused up to 70,000 deaths (Robine et al., 2008).
The 2015 India-Pakistan heat wave caused around 2,500
and 700 deaths in India and Pakistan, respectively
(Masood et al., 2015; Ratnam et al., 2016). Russia's 2010
heat wave caused around 15,000 deaths together with an
estimated economic damage of around 15 billion USD
(Lau and Kim, 2012).

Despite its relatively small contribution to global
warming emissions, Africa is among the developing
regions that are facing disproportionately greater impacts
from climate-related extremes and is in the climate zone
where the temperature change signal is expected to
emerge first from climate variability (e.g., Mahlstein
et al., 2011). Africa's higher exposure to the impacts of cli-
mate change arises from its increased vulnerability due
to limited adaptation and economic capacity, and ineffec-
tive institutional structure. Consequently, the resulting
societal impacts of heat waves, both during and after the
events are expected to be much higher in Africa
(IPCC, 2014). In the last three decades, Africa has suf-
fered 27% of the global fatalities due to climate

and weather-related extremes (Munich Re, 2011).
Furthermore, the droughts of 1974–1975 (over the Sahel
region) and 1984–1985 (over Sudan and Ethiopia) alone
led to the death of hundreds of thousands of people
(Guha-Sapir et al., 2004). Urbanization and fast-growing
population pressure on land use and land cover further
exacerbates the vulnerability of the region to heat island
effects and heat waves.

Many regions of Africa have already experienced
increases in surface temperature as reported for different
subregions, analysing various data sets. Temperatures are
estimated to be 1–2�C higher in the recent decades than
during the Medieval Climate Anomaly (Nicholson
et al., 2013). Maximum and minimum temperatures also
showed an increasing trend over Ethiopia, Kenya and
Tanzania (Gebrechorkos et al., 2019). However, both
maximum and minimum temperatures show higher vari-
ability over Ethiopia. Ceccherini et al. (2017) reported an
increase in the spatial coverage of maximum temperature
from 37.3% during the period 1981–2005 to 60.1% during
the period 2006–2015 of Africa's terrestrial surface area.

While Russo et al. (2016) showed the occurrence of
more intense heat waves with longer duration and wider
extent in recent years in Africa, Vizy and Cook (2012)
estimated an increase of 40–60 heat wave days per year
on average in the period 1989–2009 over Northwestern
Sahara. Furthermore, the significant increase in tempera-
ture, specifically during warm seasons, over Northern
Africa is unlikely to be due to natural forcings alone
(Barkhordarian et al., 2012, 2012). In addition to the
ongoing socio-economic challenges throughout the conti-
nent, changes in temperature and heat waves are
expected to increase energy costs in the future. Parkes
et al. (2019) estimated Africa's cost of energy-intensive
cooling systems to be 51 billion USD and 487 billion USD
by 2035 and 2076, respectively. As indicated by The
World Bank Group (2020) only 44.5% of the Sub-Saharan
population has access to electricity. Therefore, such an
increase in energy costs would likely be initially accom-
panied by lower access to electricity across the continent.
The increasing demand for currently unavailable, insuffi-
cient and/or unaffordable electricity for ventilation will
exert additional pressure on the least developed subre-
gions of the continent.

Improving knowledge of temperature changes, the
occurrence of heat waves, and the time of emergence
over natural variability has vital societal importance
(Harrington et al., 2016). Identifying the time when the
signal of anthropogenic climate change begins to dis-
tinctly emerge from the background natural variability is
important for climate change predictions and risk assess-
ment (Hawkins and Sutton, 2012; Lehner et al., 2017),
and for designing adaptation strategies (Hawkins
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et al., 2014). Several studies have assessed changes in
heat waves over Africa; in the Sahel region (Oueslati
et al., 2017), over Ethiopia, Kenya and Tanzania
(Gebrechorkos et al., 2019), over northern tropical Africa
(Moron et al., 2016), and at continental scale (Russo
et al., 2016; Ceccherini et al., 2017). These studies showed
that there is an increase in temperature and heat waves
over different regions of Africa, and there may be an
increase at continental scale. However, it is challenging
to draw comprehensive regional information for climate
change adaptation and mitigation as well as for litigation
from such fragmented studies.

In this study, we provide a systematic assessment of
temperature changes based on two observational and
three reanalysis data sets for the African continent. We
analyse the change in extreme temperatures and heat
waves across different African regions. For the first time,
we assess the emergence of heat waves over natural cli-
mate variability based on reliable and robust indicators of
extremes from multiple observation-based state-of-the art
data sets. This gives a picture of changes across climato-
logically different African regions. Using a set of indica-
tors, we also demonstrate the influence of several heat
metrics definitions (i.e., different thresholds and duration
requirements) on the time of emergence of heat wave
occurrence from natural variability.

2 | DATA AND METHODS

2.1 | Temperature data sets

Observational and reanalysis data sets of 2 m air tem-
perature were used in this study, over the common time
period 1980–2018. We used observations from the Cli-
mate Research Unit (CRU) Time Series (TS) version
4.03 (CRU TS4.03), provided as monthly time series at a
spatial resolution of 0.5� × 0.5�, denoted as CRU in the
following. In addition, the Berkeley Earth Surface Tem-
perature (BEST) observational data set was used, where
daily minimum and maximum temperatures are avail-
able at a spatial resolution of 1� × 1� in longitude and
latitude. Daily temperature data and monthly mean
data were used from the following reanalyses: the
European Centre for Medium-Range Weather Forecasts
Reanalysis 5 (ERA5; Hersbach et al., 2020), National
Oceanic Atmospheric Administration's Modern-Era
Retrospective Analysis for Research and Applications,
Version 2 (MERRA2; Gelaro et al., 2017), and Japanese
Meteorological Agency's 55-year reanalysis (JRA-55;
Kobayashi et al., 2015). These data sets comprise the
only presently available observational data set covering

the African continent at daily resolution and the three
most recently published and state-of-art reanalysis data
sets, which are regarded representative for this study.
We use these different data sources to assess the robust-
ness of trends and variability analysed here, as
reanalyses differ in model and data streams used, and
observational products in data processing. We consider
all data products a priori equally likely. Exceptions are
cases of known problems (e.g., see Section 3.2 below
discussion of issues in tropical Africa for MERRA2),
and we would like to flag the limited coverage by sta-
tion data for BEST and CRU.

We computed daily maximum and daily minimum
temperatures from ERA5 hourly data while maximum
and minimum temperatures were available at daily tem-
poral scale for MERRA2 and JRA-55. Monthly mean
temperatures were available and downloaded for CRU
and ERA5. For MERRA2 and JRA-55 we averaged daily
temperatures to monthly means. The horizontal spatial
resolution for ERA5, MERRA2 and JRA-55 is
0.25� × 0.25�, 0.625� × 0.5� and 1.25� × 1.25� in longitude
and latitude, respectively.

The data sets are available from the following
weblinks. The CRUTSv4.03 data were downloaded from
the Natural Environment Research Council's Data
Repository for Atmospheric Science and Earth Observa-
tion (UK) at http://archive.ceda.ac.uk/. BEST data set is
obtained from http://berkeleyearth.org/data-new/. The
ERA5 data were downloaded from https://cds.climate.
copernicus.eu/cdsapp#!/home. MERRA2 is available at
https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-
2%22&page=1&source=Models%2FAnalyses%20MERRA-
2, and JRA-55 at https://jra.kishou.go.jp/JRA-55/index_
en.html.

We used monthly temperature to assess long-term
temperature changes and their representation in CRU
observations and the reanalyses. Changes in tempera-
ture extremes and heat waves were assessed from daily
temporal-scale temperatures of observational BEST and
the reanalysis data sets. Temperature anomalies were
computed for each data set relative to the reference
period 1980–2009. Decadal trends and associated 95%
confidence intervals in monthly mean temperature
anomalies were computed based on ordinary linear
regression. We assessed changes in monthly mean tem-
perature and extremes over the African continent and
for four large-scale regions defined after Field
et al. (2012): Northern Africa (NA), Western Africa
(WA), Eastern Africa (EA) and Southern Africa (SA),
all shown in Figure 1. Area weighting (by the cosine of
the latitude) was applied for computation of the large-
scale regions.
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2.2 | Definitions of heat wave indices

Climate extremes, in general, can be defined by their rare
occurrence and/or the high magnitude of damages to
society and ecosystems (Hegerl et al., 2011). Specifically,
heat waves are usually defined as consecutive days of
extremely hot temperatures which exceed thresholds
of temperature and span consecutive days (Wang
et al., 2019). A number of factors affect a heat wave's defi-
nition, including the sectors (health, infrastructure, agri-
culture) that might be of particular interest, hence
different characterizations of extreme heat are often
targeted to particular impacts. What can be described as
a heat wave also varies by geographic and climatic condi-
tions. Consequently, there is no single and universally
accepted definition (Oueslati et al., 2017; Shafiei Shiva
et al., 2019). Differing thresholds, duration and ancillary
variables contribute to divergence in defining heat waves
(Smith et al., 2013).

In assessing the changes in heat waves in this study,
we use indices introduced by the Expert Team on Cli-
mate Change Detection, Monitoring and Indices
(ETCCDI; http://etccdi.pacificclimate.org/), defined in
Table 1. Summer days (SU), the percentage of days above
the 90th percentile (TX90P) and warm spell duration

index (WSDI) are computed from daily maximum tem-
perature, whereas tropical nights (TR) and warm nights
(WN) are computed from daily minimum temperature.
Furthermore, the indices used in this study can be
grouped as absolute threshold (SU and TR) and relative
threshold (TX90P, WN and WSDI) indices.

Using a subset of years as the reference period is a
typical approach when calculating thresholds for
percentile-based indices (Christidis and Stott, 2016;
Guo et al., 2017). However, using a subset of years to
compute thresholds can cause differences in
exceedances between the years within the reference
period and years outside the reference period (Zhang
et al., 2005). Exceedances computed for years outside
the reference period, for temperature, can become
higher than exceedances computed for years used in
the reference period. To avoid this inconsistency, in this
study, we use the whole period of analysis (1980–2018)
to compute thresholds of percentile-based indices in
order to avoid jumps in exceedances per year along the
years of analysis. Thresholds are then smoothed over
adjacent days to reduce noise and improve robustness.
As demonstrated by Zhang et al. (2005), a narrow
smoothing window (5 days) can result in biases of
exceedance rates due to uncertainty in estimating per-
centile thresholds, while a wide smoothing window
(25 days) can reduce the amplitude and annual cycle of
thresholds, particularly in regions with complex sea-
sonal cycle. In this study, we use a moderate smoothing
window of 15 days to allow for robust thresholds while
still capturing the seasonal cycle of thresholds. Combin-
ing such moderate smoothing with a reference period
computed over the entire time series ensures a

FIGURE 1 Sub-regions over the African continent used in this

study, Northern Africa (NA), Western Africa (WA), Southern Africa

(SA) and Eastern Africa (EA), defined after Field et al. (2012)

[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 ETCCDI indices of temperature extremes used in

this study

Abbreviation Description of indices

SU Number of summer days: Maximum
temperature (Tmax) > 35�C

TR Number of tropical nights: Minimum
temperature (Tmin) > 24�C

TX90P Percentage of days when Tmax >90th
percentile

WN Number of warm nights when Tmin >95th
percentile for at least two consecutive days

WSDI_3 Warm spell duration index (annual count of
days) when Tmax >95th percentile for at
least three consecutive days

WSDI_6 Warm spell duration index (annual count of
days) when Tmax >90th percentile for at
least six consecutive days
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homogenous and robust estimate of exceedance rates
across the different African regions from observational
and reanalysis data.

Ordinary linear regression, accounting for autocorre-
lation, is used to compute decadal trends of monthly
mean temperature time series and decadal trends of
extreme temperatures and heat wave indices. Mann-
Kendall's significance test is used to assess the signifi-
cance of change in heat wave indices, at regional scale
(over the four large regions NA, WA, EA and SA), and at
local scales (on the longitude-latitude grid).

2.3 | Time of emergence of heat waves

Time of Emergence (ToE) is the time at which the signal
of heat wave indices begins to emerge above, and then
continuously exceeds the natural climate variability
(noise). Because of less annual variability of temperature,
heat waves show earlier time of emergence in tropical
regions than in high latitudes (Diffenbaugh and
Scherer, 2011; Mahlstein et al., 2011; King et al., 2017).
The ToE of heat waves is identified using the signal-to-
ratio method by Hawkins and Sutton (2012). We compute
the signal using anomalies of heat wave indices of the
respective data sets relative to the reference period.
The noise is estimated using the standard deviation of de-
trended anomalies of the indices in the reference period
(1980–2009). The year of emergence of heat waves is
determined as the year when the computed signal-to-
noise ratio continuously stays above a specified thresh-
old, which here is one standard deviation of de-trended
noise. Using a threshold value higher than one would
give greater confidence in the ToE of heat waves. How-
ever, the reference period, 1980–2009, is in the recent
warming period, and does not reflect the supposed-quasi-
natural climate variability of the regions. Therefore, we
use one standard deviation as the threshold in identifying
the ToE for the heat wave indices over the last nearly
four decades.

For the preprocessing of the data sets, we used
NetCDF Operator (Robine et al., 2008), available at
http://nco.sourceforge.net/nco.html, to concatenate, per-
mute dimensions, rename, and extract the African
regions from the global data set. Climate Data Operator
(CDO), available at https://code.mpimet.mpg.de/
projects/cdo, was applied for additional preprocessing of
time-series data. The number of heat wave days, which
fulfil the respective definitions, were computed using
CDO software. Python's scipy.stats package (https://
www.scipy.org/about.html) was used for the statistical
analyses.

3 | RESULTS AND DISCUSSION

3.1 | Changes in monthly mean
temperature

Figure 2 shows the monthly temperature climatologies
(1980–2018) of the four different African regions, com-
puted from the CRU observations and the ERA5,
MERRA2 and JRA-55 reanalysis data sets. The data sets
show good agreement in climatological temperature.
Because of the equatorial location of EA and WA regions,
they show a relatively similar magnitude and pattern of
the annual temperature cycle. However, WA shows
higher variability and amplitude of the bimodal tempera-
ture patterns. The Northern- and Southern-hemispheric
location of NA and SA regions clearly show the winter-
summer seasonal contrast. The annual cycle and season-
ality are most pronounced over NA and SA, with
maximum and minimum temperatures, respectively, in
July, while the equatorial climate over EA and WA shows
a bimodal temperature pattern, with one maximum in
March to April and a second maximum in September to
October. Both the observational and reanalysis data sets
are consistent in their representation of the annual cycle,
with only small differences detected. Temperatures from
CRU exceed those of the reanalysis data sets in the
months from March to December over WA and EA, and
from January to July over SA. While JRA-55 shows the
highest temperature over NA in all months, MERRA2
shows the highest temperature in months from August to
December over SA.

Figure 3 shows results of the trend analysis of
monthly temperature anomalies (after the seasonal cycle
is removed) for the period 1980–2018 from CRU, ERA5,
MERRA2 and JRA-55 over the four African regions.
Despite differences in the magnitudes of trends, all the
data sets agree on increasing temperature trends over
1980–2018 and show significant warming in all of the
regions. Overall, highest trends are found over NA with
more than 0.25�C per decade (from 0.27 ± 0.07�C to
0.41 ± 0.10�C) while trends are lowest over SA with
about 0.15�C per decade (from 0.15 ± 0.08�C to
0.19 ± 0.08�C). Observations from CRU show the largest
trend over NA with 0.28 ± 0.07�C per decade while
trends are 0.16 ± 0.04�C per decade over WA,
0.18 ± 0.04�C per decade over EA, and 0.17 ± 0.04�C per
decade over SA. As shown by the larger error bars (95%
confidence interval), the highest variability within the
data sets is observed over NA, nevertheless the trends are
all significant. The largest spread in trends (between data
sets) is found over WA (error bars hardly overlap) while
the lowest spread is in SA.
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The greatest difference between trends in ERA5 and
CRU is observed over NA and EA. JRA-55 shows consis-
tent agreement with the observed CRU trends in all

regions. In most cases, the reanalysis data sets exhibit
higher decadal trends than the CRU observations. How-
ever, good agreement is found between monthly tempera-
ture time series of reanalyses and of CRU observations
from correlation analysis. Positive correlation coefficients
show that the monthly time series of temperature anom-
aly (1980–2018) from all reanalysis data sets are in good
agreement with the observed CRU time series.
ERA5 monthly temperature shows the highest correla-
tion with CRU temperature, with correlation coefficients
being 0.95, 0.93, 0.86 and 0.82, over WA, NA, SA and EA
regions, respectively. MERRA2 shows the lowest correla-
tion with CRU, with coefficients of 0.78 and 0.75 over
WA and EA, respectively, because of unreliably high tem-
peratures between the years from 2000 to 2010 (discussed
below).

3.2 | Changes in extreme temperatures
and heat waves

Changes in extreme temperatures and in heat waves over
1980–2018 are presented in Figure 4 based on BEST
observations and reanalyses. Time series of annual

FIGURE 2 Monthly mean temperature climatology (1980–2018) of Northern Africa (NA), Western Africa (WA), Southern Africa

(SA) and Eastern Africa (EA) using multiple datasets [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Trends of monthly mean temperature (1980–2018)
from CRU, ERA5, MERRA2 and JRA-55 data sets over NA, WA,

EA and SA regions. Error bars denote the 95% confidence interval

of fitting decadal trends [Colour figure can be viewed at

wileyonlinelibrary.com]

1170 ENGDAW ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


maximum and minimum temperature anomalies
(Figure 4, rows a and b) show an increasing trend in all
African regions, consistently in all data sets. Extreme

daytime and nighttime temperatures (Figure 4, rows c
and d) and heat wave indices (Figure 4, rows e to h) indi-
cate changes in SU, TR, TX90P, WN, WSDI_3 and

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIGURE 4 (a,b) Annually averaged daily maximum and minimum temperature anomalies (Tmax and Tmin), (c,d) number of summer days

and tropical nights (SU and TR), and (e,h) heat wave indices (frequency of daily maximum temperature TX90P, number of warm nights WN,

and number of days of 3-day and 6-day warm spells WSDI_3 and WSDI_6) shown for (left to right) the African regions NA, WA, EA and SA

from observational BEST and reanalysis data sets (ERA5, MERRA2 and JRA-55) [Colour figure can be viewed at wileyonlinelibrary.com]
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WSDI_6 over the African regions, based on daily maxi-
mum and minimum temperatures of BEST observations,
and ERA5, MERRA2 and JRA-55 reanalysis data sets. All
the indices show an increase in heat wave days over the
African regions. As the climatology of the regions pres-
ented in Section 3.1 (see Figure 2) shows, NA and SA
regions have the highest and the lowest seasonal cycles,
respectively. Consequently, absolute-threshold-based
indices, SU and TR, show the highest number of heat
wave days per year over NA and the lowest number of
heat wave days per year over SA. Because of the persis-
tence requirement of two, three and six consecutive days
for WN, WSDI_3 and WSDI_6 (Figure 4, rows f to h),
respectively, the number of heat wave days per year in
these indices is smaller than for indices based on absolute
thresholds (SU and TR) or percentiles (TX90P). The data
sets show good agreement in capturing both the magni-
tude and temporal evolution of heat waves. Over NA, the
indices WN, WSDI_3 and WSDI_6 based on the observa-
tional BEST data set captured the highest number of heat
wave days since the 2000s.

Noticeable is that MERRA2's annual maximum tem-
perature anomaly shows exceptionally higher positive
deviations over WA and EA regions between the years
2000 and 2010. Consequently, all MERRA2 indices com-
puted from maximum temperature over WA and EA
regions are much higher than those from the other data
sets over the same regions and time period. The 2000s in
MERRA2 are marked by increased variability and
decrease in specific humidity from 850 hPa to the land
surface. This led to biases in the middle and lower tropo-
sphere and is a deficiency transferred from the predeces-
sor version of MERRA2 (Gelaro et al., 2017). Spatially,
those biases are located over the tropical regions (20�S–
20�N) where WA and EA regions are entirely contained.
We further examined MERRA2's high heat wave occur-
rence and computed the difference in mean WSDI_6
between MERRA2 and ERA5 between 2000 and 2010.
We found the biases reported by Gelaro et al. (Gelaro
et al., 2017) located over the tropical mountainous
regions of the Ethiopian highlands, WA and Equatorial
Central Africa (not shown). However, TR from MERRA2
consistently shows the lowest number of heat wave
occurrences in all regions. WN, WSDI_3 and WSDI_6
indices from MERRA2 show consistency in capturing
high heat wave days in the well-known El Nino year
(1997/98). All data sets agree in capturing high heat wave
days in the year 1997/98 over all African regions, though
with different magnitude. Indices from MERRA2 show
the highest number of heat wave days in the year
1997/98 over WA and SA regions.

All data sets show that NA experienced an exception-
ally high number of heat wave days in 2010. SU, TR,

TX90P, WSDI_3 and WSDI_6 indices computed from
ERA5 identify 2010 as the year of highest heat wave days
over WA. Furthermore, 2016 is identified (in TR TX90P,
WSDI_3 and WSDI_6 metrics) as the year with the sec-
ond highest number of heat wave days over WA as
shown by ERA5 and JRA-55. In the EA and SA regions,
2016 was the year with the highest number of heat wave
days as shown by most of the indices.

Even though there are differences in the number of
heat wave days among the indices analysed from BEST,
ERA5, MERRA2 and JRA-55 data sets, the heat wave indi-
ces consistently show an increasing number of heat wave
days per year over the recent decades. Neglecting
MERRA2's unreliably high number of heat wave days
between the years 2000 and 2010 over WA, EA and SA, all
of the indices from the remaining reanalysis data sets and
the BEST observations agree on identifying 2010 (mainly
over NA but also over WA) and 2016 (over EA and SA) as
years with the highest number of heat wave days. Note that
unlike 2016 (over EA and SA), 2010 (over NA) has an
extraordinarily high number of heat wave days compared
to the remaining years in the respective regions.

This is further demonstrated in Figure 5, which dis-
plays normalized histograms for TX90P for the period
1980–2018 based on ERA5. It clearly shows that the years
2010 (over NA) and 2016 (over EA, WA and SA) are at
the far edge of the respective distribution underpinning
that 2010 and 2016 were exceptionally warm years. Also,
the years 2015, 2017 and 2018 contributed with a high
number of extreme days in EA, WA or SA.

Largeron et al. (2020) investigated the April 2010 heat
wave over Northern Africa. During that month, large
areas of the Saharan desert and Sahel regions exceeded
Tmax > 40�C and Tmin > 27�C for more than 5 consecutive
days. Evan et al. (2015) reported that daily maximum
temperature reached 44.5�C over Niamey. Radiation bud-
get analysis showed that there was more incoming
longwave radiation and less incoming shortwave radia-
tion. Incoming shortwave anomalies were reduced due to
enhanced cloud formation over the region while
longwave radiation was enhanced due to the greenhouse
effect of a larger amount of water vapour. Early northward
transport of monsoon flow and tropical plumes were
sources of water vapour for the Western Sahel and Sahara
regions, respectively (Largeron et al., 2020). Thus, more
emissivity of longwave radiation by the land surface and
less cooling of the atmospheric surface layer led to night-
long warming (Largeron et al., 2020). Consequently, the
greenhouse effect of water vapour led to an increase in
minimum temperatures over the Sahel region (Oueslati
et al., 2017). The occurrence of the 2010 heat wave event
had significant impacts on human health, hydrology and
agriculture in the region (Evan et al., 2015).
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3.3 | Trends in heat wave indices

Our analysis reveals a consistently increasing trend in heat
wave days per decade across all regions of the African con-
tinent as summarized in Figure 6. The highest and lowest
decadal trends of both extreme temperatures and heat
wave days are found in NA and SA regions, respectively.
SU and TR, compared to the other indices, show the
greatest change (per decade) in all regions, except in SA. In
SA, the decadal trends for SU fall between 1.6 and 3.6 days
per decade for all data sets while all other African regions
show much higher SU trends ranging from near 4 days up
to 7.5 days per decade. Despite differences in magnitude of
change, the absolute threshold indices, SU and/or TR,
show the highest decadal trends across NA, WA and EA
regions. NA experiences the highest decadal trend with an
increase in TR of 6.6, 7.8, 8.4 and 9 days per decade from
BEST, MERRA2, JRA-55 and ERA5, respectively. WA
shows a TR increase of 6 to 8.5 days from the reanalysis
data sets and 2.2 days per decade from BEST. EA shows a
TR increase of 4.5 to 7 days per decade from BEST, ERA5
and JRA-55 (and <4 days from MERRA2), while SA expe-
rienced an increase of <2 TR days per decade.

The best agreement among all data sets is observed
for decadal trends of the 90th percentile index (TX90P)
across all regions. The TX90P index shows an increase
of about 1% to 4% per decade in all African regions.
The minimum-temperature-based warm nights index

(WN) also consistently shows an increase of about 1.5
to 6 days per decade in all African regions. However,
because of larger day-to-day variability, WN from the
ERA5 data set shows the lowest decadal trend in all
regions. WN from JRA-55 shows stronger decadal trend
signals in all of the regions when compared with warm
spell indices. Note that we do not interpret MERRA2
results in EA and WA due to the shortcomings dis-
cussed in Section 3.2.

The warm spell indices, WSDI_3 and WSDI_6, also
show increasing trends. There, good agreement is found
in all reanalysis data sets (mainly over NA and SA) show-
ing an increase in the duration of warm spells by 1 to
4 days per decade. Warm spell indices from BEST obser-
vations (over NA and SA) show the highest decadal
trends while JRA-55 shows the lowest trends in all
inspected regions. Among all data sets, BEST shows the
highest decadal trends over NA, WA and SA regions
when the unreliable MERRA2 indices over WA are left
aside. The highest difference between the observational
BEST and the reanalysis data set is observed in TR
over WA.

All regional trends of the analysed indices are found
to be statistically significant (α = 0.05% significance level)
over the NA, WA and EA regions, except for SA where
SU from MERRA2 is not significant.

Local-scale trends for several indices are presented in
Figure 7, displaying SU, TR, TX90P and WSDI_6 from

FIGURE 5 Normalized histograms of average exceedance values of TX90P (number of days) from ERA5 for (left to right) the African

regions NA, WA, EA and SA. Numbers in tails indicate extreme years [Colour figure can be viewed at wileyonlinelibrary.com]
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ERA5 at a resolution of 0.25� × 0.25�. Consistent with the
results discussed above, we find the highest increase in
heat wave days predominantly over NA and north of the
equator (in parts of EA and WA) showing significant

trends. SU and TR show an increase of 5 to more than
10 days per decade, with relatively lower rates of change
over the Ethiopian highlands in the EA region
(Figure 7a,b). The SU index shows high decadal trends,

FIGURE 6 Decadal trends of

extreme temperatures and heat wave

indices (left to right in subpanels) SU

and TR (days per decade), TX90P (%

per decade), WN, WSDI_3 and

WSDI_6 (days per decade), computed

from BEST observations, ERA5,

MERRA2 and JRA-55 reanalysis data

sets over NA, WA, EA and SA

regions. Bold shapes indicate

statistically significant regional

trends at significance level 0.05. Note

that we do not show MERRA2 results

in EA and WA regions due to their

shortcomings discussed in Section 3.2

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Spatial map of

decadal trends (1980–2018) of (a) SU,
(b) TR, (c) TX90P and (d) WSDI_6

computed from the ERA5 reanalysis

data set. Hatching indicates a locally

significant trend [Colour figure can

be viewed at wileyonlinelibrary.com]
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which are statistically significant also at regional scale
over SA. TX90P shows statistically significant local-scale
decadal trends over almost all of Africa (Figure 7c). The

heat wave index WSDI_6 also shows significant trends,
except for SA where the six consecutive days criterion is
too strict for this region.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIGURE 8 Time of emergence of trends over natural variability of (a,b) maximum and minimum temperature (Tmax and Tmin), (c,d)

extreme temperature (SU, TR), and (e–h) heat wave indices (TX90P, WN, WSDI_3 and WSDI_6) shown for (left to right) the African regions

NA, WA, EA and SA from observational (BEST) and reanalysis (ERA5, MERRA2 and JRA-55) data sets. Y-axis for all panels shows the S/N

ratio. The shaded region between −1 and +1 shows the standard deviation of de-trended noise. Only emerged (continuously above the

shaded region) trends are shown. Vertical lines show the year of emergence [Colour figure can be viewed at wileyonlinelibrary.com]
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3.4 | Time of emergence (ToE) of
heat waves

The ToE of heat wave trend signals over natural variabil-
ity is presented in Figure 8. The earliest emergence is
observed in the early 2000s, over NA for Tmax, Tmin and
SU (from BEST and JRA-55) in 2001 and over EA for SU
and TX90P (from ERA5) in 2002. In the NA region, emer-
gence of trends in extreme temperature and heat wave
days over the natural variability is observed in the past
two decades for all indices and consistently in most data
sets. Over the WA and EA regions, emergence of trends
is found since about 2010 for most indices shown by at

least one or two data set(s) (except Tmax over EA). Also,
over SA, emergence of trends is observed since 2010 but
not for the full set of indices.

In general, trends of Tmax, Tmin and extreme tempera-
ture days (SU and TR) show earlier emergence while heat
wave indices based on relative threshold and/or consecu-
tive days (TX90P, WN, WSDI_3 and WSDI_6) show del-
ayed emergence. Trend signals in the number of days with
extreme temperatures show the earliest emergence over NA
and EA regions. The minimum-temperature-based heat
wave index WN shows emergence in all regions, though in
WA from one data set only (JRA-55). Low variability in
nighttime temperatures is regarded the main reason for the

(a) (b)

(c) (d)

FIGURE 9 Comparison of standardized evolution of regional emerged heat wave for extreme temperatures (SU and TR) and heat wave

indices (TX90P, WN, WSDI_3 and WSDI_6) shown for (a) NA, (b) WA, (c) EA and (d) SA regions from the ERA5 data set. The shaded

region between −1 and +1 shows the standard deviation of de-trended noise. Vertical lines show the year of emergence. Only emerged

(continuously above the shaded region) indices are shown [Colour figure can be viewed at wileyonlinelibrary.com]
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early emergence of minimum-temperature-based indices
(Morak et al., 2011, 2013; Bindoff et al., 2013). The later
emergence of trends in heat waves indices WN, WSDI_3,
WSDI_6 can be explained by the fact that these indices are
based on more stringent persistence criteria. The number of
heat wave days (WSDI_3 and WSDI_6) show emergence in
the past decade in all African regions.

While BEST, JRA55 and ERA5 show emerging trends
for a range of indices in several regions, indices com-
puted from MERRA2 show emergence only over NA and
SA regions but not over WA and EA. This is due to the
unrealistic and high variability in MERRA2 during
the period 2000–2010 (Gelaro et al., 2017) as discussed in
Section 3.2. Consequently, the higher noise keeps the
signal-to-noise ratio below one standard deviation.

Good agreement between all data sets is found for
NA. All the data sets strikingly agree in identifying 2013
as year of emergence for TX90P index over NA. For some
indices, for example, over WA and EA, only ERA5 shows
emergence above the de-trended natural climate variabil-
ity. However, other data sets are also near to emergence.
They also would show emergence if there were no sharp
declines in one of the recent years (e.g., TX90P and warm
spell indices from JRA-55 over WA in 2018).

Due to the availability of reanalysis data, we can only
use the recent period to characterize the initial heat wave
activity. Thus, our ToE estimate is conservative (although
the natural variability is de-trended) and may be later
than a comparison with earlier time periods that would
better represent the quasi-natural climate system. This
may be the reason why some indices show no or delayed
emergence over EA and SA regions.

The influence of absolute thresholds, or percentile
thresholds and/or consecutive day criteria on ToE of heat
wave indices from natural variability is demonstrated in
Figure 9. SU, TR, TX90P and WSDI_6 from ERA5 are
plotted for the four African regions. Because of stronger
trend signals, the earliest ToE primarily comes from
absolute threshold indices, SU and TR. Therefore, the
earliest emergence of SU over NA can be explained by its
strong trend signal. However, the time of emergence is
delayed to the recent past for heat wave indices, which
are based on relative thresholds (TX90P) and/or consecu-
tive days (WSDI_6), the latter index requiring a longer
duration of the extreme.

A study on the ToE based on climate models by King
et al. (2015) showed that WA is the only region in Africa
where temperature extremes would emerge prior to 2014.
In their analysis, they assessed ToE of temperature
extremes using model-based estimates of variability and
1860–1910 as reference period for representing natural
climate variability. Our observation-based results, in con-
trast, show an earlier ToE of not only temperature
extremes but also heat wave indices, and not only over

WA but also over NA, EA and SA regions of Africa. Even
using conservative estimates of ToE, our observation-
based analysis demonstrates that temperature extremes
and heat waves have already emerged over the African
region, and since the early 2000's.

4 | CONCLUSION

In this study, we assessed changes in temperature and
heat waves over different regions of Africa using gridded
observational (CRU, BEST) and state-of-the-art
reanalysis (ERA5, MERRA2 and JRA-55) data sets. All
data sets represent the seasonal cycle well and show
increasing trends in monthly mean temperatures over all
the investigated regions, Northern Africa (NA), Western
Africa (WA), Eastern Africa (EA) and Southern Africa
(SA). The data sets exhibit highest decadal temperature
trends over NA and lowest decadal temperature trends
over SA.

Extreme temperatures are rising and heat wave indi-
ces show an increase in heat wave occurrence over all of
the African regions. Although the rates of increase differ
between regions and the data sets, the detected trends are
found to be statistically significant (except SU over SA, in
MERRA2). Absolute threshold-based indices for extreme
temperatures, summer days (SU) and tropical nights
(TR), show the highest decadal trends in most of the Afri-
can regions, compared to relative threshold indices, 90th
percentile (TX90P), warm nights (WN), and warm spell
duration indices (WSDI_3, WDI_6).

In the period from 1980 to 2018 analysed in this
study, an increase in TR of 2 to 9 days per decade was
found in NA (all four data sets), WA (three data sets) and
EA (two data sets) regions, with an increasing trend of
<2 days per decade in SA. The SU trend ranges between
3.7 and 7.7 days per decade for all regions except for SA,
where it is 1.8 to 3.8 days per decade. TX90P trends are
1% to 4% per decade and the warm spell duration index
was found to increase by a maximum of 7 days per
decade. The decadal trends of extreme temperature and
heat wave days from all the observational and reanalysis
data sets are statistically significant (alpha = 0.05% signif-
icance level) over all regions of Africa except SU from
MERRA2 over SA. In addition to regional mean changes,
the heat wave indices also show statistically significant
increasing trends at the local scale, based on ERA5.

Most analysed indices show the highest number of
heat wave days in 2010 (over NA and WA), and 2016
(over EA and SA). Both observational and reanalysis data
sets identify 2010 as a year of exceptional heat wave
occurrence over NA, while 2016 is identified as the year
of highest heat wave occurrence, relative to the
remaining years analysed, over EA and SA.
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Emergence of the trend signals from natural variabil-
ity was found in all regions for most heat wave indices.
Specifically, over NA, all indices consistently show emer-
gence above the natural climate variability in the past
two decades. The earliest time of emergence was found
for Tmax and Tmin and related extreme temperature indi-
ces, SU and TR over NA and EA in the early 2000s.
Trends in warm spell days emerge over natural variability
in the past decade consistently in all African regions.

Even though the time of emergence estimate is con-
servative as the reference period 1980–2009 represents
the quasi-natural climate system is in the recent years,
the observations show that heat wave trend signals have
already emerged over natural variability in all African
regions, and that the emergence is qualitatively consis-
tent across different heat wave metrics, supporting the
result. Furthermore, our findings show earlier time of
emergence of heat wave trend signals when basing emer-
gence on observed variability and change compared to
estimates from model studies, and in all the inspected
regions of the African continent.

In general, trend signals of absolute-threshold based
extreme temperatures show earlier time of emergence from
natural variability than heat wave indices based on percen-
tile and/or consecutive days (TX90P, WN and warm spell
indices). Specifically, the minimum-temperature-based
heat metric, WN, shows earlier emergence over NA and
over EA compared to warm spell indices.

Despite differences in magnitudes, the increasing
trend of temperature and heat wave indices show reason-
able consistency in the data sets used in this study. Disre-
garding the shortcoming of MERRA2 over tropical
regions in the period 2000–2010, the good overall agree-
ment underpins the importance of analysing multiple
data sets for gaining robust results. Furthermore, the con-
sistency of observational and reanalysis data sets in iden-
tifying heat wave days is essential for further work on
attributing the observed changes to anthropogenic cli-
mate change.
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