
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Human influence strengthens the contrast between tropical wet
and dry regions

Citation for published version:
Schurer, A, Ballinger, AP, Friedman, AR & Hegerl, G 2020, 'Human influence strengthens the contrast
between tropical wet and dry regions', Environmental Research Letters. https://doi.org/10.1088/1748-
9326/ab83ab

Digital Object Identifier (DOI):
10.1088/1748-9326/ab83ab

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Environmental Research Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322484696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/andrew-schurer(3b93b671-5844-4d41-a0eb-7dbe709e11e1).html
https://www.research.ed.ac.uk/portal/en/persons/andrew-ballinger(a6d64402-ad8f-491b-87d2-60e834918a03).html
https://www.research.ed.ac.uk/portal/en/persons/andrew-friedman(3d962c02-f784-4d82-8abb-9fb438b1ecc0).html
https://www.research.ed.ac.uk/portal/en/persons/gabi-hegerl(9ec4c74f-68a4-4d42-9798-21f2c68ca59f).html
https://www.research.ed.ac.uk/portal/en/publications/human-influence-strengthens-the-contrast-between-tropical-wet-and-dry-regions(72a5f34d-b242-478d-9477-4fd409a8a945).html
https://www.research.ed.ac.uk/portal/en/publications/human-influence-strengthens-the-contrast-between-tropical-wet-and-dry-regions(72a5f34d-b242-478d-9477-4fd409a8a945).html
https://doi.org/10.1088/1748-9326/ab83ab
https://doi.org/10.1088/1748-9326/ab83ab
https://doi.org/10.1088/1748-9326/ab83ab
https://www.research.ed.ac.uk/portal/en/publications/human-influence-strengthens-the-contrast-between-tropical-wet-and-dry-regions(72a5f34d-b242-478d-9477-4fd409a8a945).html


Environmental Research Letters

ACCEPTED MANUSCRIPT • OPEN ACCESS

Human influence strengthens the contrast between tropical wet and dry
regions
To cite this article before publication: Andrew Schurer et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab83ab

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 92.232.252.237 on 27/03/2020 at 16:30

https://doi.org/10.1088/1748-9326/ab83ab
https://creativecommons.org/licences/by/3.0
https://doi.org/10.1088/1748-9326/ab83ab


 

1 

 

Human influence strengthens the contrast between tropical wet and 

dry regions 

Andrew P. Schurer1*, Andrew P. Ballinger1, Andrew R. Friedman1, and Gabriele C. Hegerl1,  
1 School of Geosciences, University of Edinburgh, UK 
 

Corresponding author: A. P. Schurer (a.schurer@ed.ac.uk) 
 

 

 

Abstract  

Climate models predict a strengthening contrast between wet and dry regions in the tropics and 

subtropics (30°S-30°N), and data from the latest model intercomparison project (CMIP6) 

support this expectation. Rainfall in ascending regions increases, and in descending regions 

decreases in climate models, reanalyses, and observational data. This strengthening contrast can 

be captured by tracking the rainfall change each month in the wettest and driest third of the 

tropics and subtropics combined. Since wet and dry regions are selected individually every 

month for each model ensemble member, and the observations, this analysis is largely unaffected 

by biases in location of precipitation features. Blended satellite and in situ data from 1988-2019 

support the CMIP6-model-simulated tendency of sharpening contrasts between wet and dry 

regions, with rainfall in wet regions increasing substantially opposed by a slight decrease in dry 

regions. We detect the effect of external forcings on tropical and subtropical observed 

precipitation in wet and dry regions combined, and attribute this change for the first time to 

anthropogenic and natural forcings separately. Our results show that most of the observed 

change has been caused by increasing greenhouse gases. Natural forcings also contribute, 

following the drop in wet-region precipitation after the 1991 eruption of Mount Pinatubo, while 

anthropogenic aerosol effects show only weak trends in tropic-wide wet and dry regions 

consistent with flat global aerosol forcing over the analysis period. The observed response to 

external forcing is significantly larger (p>0.95) than the multi-model mean simulated response. 

As expected from climate models, the observed signal strengthens further when focusing on the 

wet tail of spatial distributions in both models and data.   
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1. Introduction  

Anthropogenic climate change is expected to change global-scale precipitation patterns, and 

many of the impacts of climate change are expected to occur through change in mean 

precipitation, and its extremes, heavy rainfall and drought. Such events have a large effect on 

society with floods, already one of the most costly natural disasters (Munich Re, 2019), and 

drought expected to increase in some regions (Collins et al., 2013). Both have been linked to 

impacts including migration (Stapleton et al., 2017).  

Global mean warming is expected to increase the global moisture content of the atmosphere 

following the Clausius-Clapeyron relationship (see Hegerl et al., 2015 and references therein; 

Bindoff et al., 2013). Climate models simulate changes in global mean precipitation of 2-3% K–1 

(Pfahl et al. 2017) in response to increases in greenhouse gas concentrations, which is less than 

the 7% K–1 change in atmospheric moisture expected from the Clausius-Clapeyron equation 

(Chadwick et al., 2013; Held and Soden, 2006). This is because atmospheric heating by 

greenhouse gases and energetic constraints on global precipitation reduce the warming impact on 

rainfall, compared to that on atmospheric moisture (Allan et al., 2014; Bony et al., 2013; 

Jeevanjee and Romps, 2018; Stephens and Ellis, 2008). Changes in precipitation that are directly 

linked to warming are reasonably robust between GCMs. In contrast, changes in atmospheric 

circulation can cause changes in the strength, location and pattern of precipitation features which 

are far more uncertain and a source of substantial differences in rainfall changes between climate 

models (e.g. Bony et al., 2013; Shepherd, 2014). In addition, climate models have persistent 

biases in climatological precipitation, such as a double ITCZ (Flato et al., 2013). As warming in 

models strengthens (and possibly shifts) some of the precipitation features, these climatological 

and dynamical differences lead to substantial uncertainty in future rainfall changes, with climate 

models not agreeing on the sign of change over much of the land regions (Collins et al., 2013).   

This uncertainty has limited our ability to detect today’s rainfall changes and attribute them 

to forcing.  Nevertheless, some observed precipitation changes have been attributed to human, 

particularly greenhouse gas, influences (Bindoff et al., 2013). Anthropogenic change has been 

detected in annual zonal precipitation change as well as in zonal precipitation change in some 

seasons, although changes were noisy and affected by data uncertainty (Zhang et al., 2007; Allan 

and Soden, 2008; Wu et al., 2013; Polson et al., 2013a). Marvel et al. (2019) found detectable 
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global-scale increases in a drought index in the mid-20th century. The amplification of the 

seasonal precipitation range (Chou et al. 2013) and spatial surface salinity patterns indicating 

precipitation minus evaporation  (Durack et al., 2012; Skliris et al., 2016, 2014; Terray et al., 

2012), are also consistent with anthropogenic forcing and suggest a human influence on salinity 

through precipitation changes. Both the latter analyses as well as analysis of in situ and blended 

observed precipitation datasets have suggested a larger response than the response in the multi-

model mean fingerprint (Polson et al. 2013b; Polson and Hegerl 2017; Min et al. 2011; Borodina, 

Fischer, and Knutti 2017; Allan and Soden 2008; Zhang et al. 2013), although the discrepancy is 

not always significant. 

Anthropogenic aerosols have also had a detectable influence on 20th century changes in 

precipitation. They have led to reduced precipitation in monsoon regions that tracks the timing of 

peak aerosol forcing (Polson et al. 2014; Undorf, et al. 2018a; Undorf et al. 2018b; Wu, 

Christidis, and Stott 2013; Bollasina, Ming, and Ramaswamy 2013) and have, again with timing 

consistent with peak forcing, shifted the ITZC away from the stronger forced Northern 

Hemisphere (Dong and Sutton, 2015; Hwang et al., 2013, for anthropogenic aerosols and also 

greenhouse gases). Volcanic stratospheric aerosols have influenced precipitation by also shifting 

the ITCZ away from peak cooling (Haywood et al. 2013) and by reducing the contrast between 

wet and dry regions (Iles et al. 2013; Iles and Hegerl 2015). Observational evidence furthermore 

supports the intensification of extreme rainfall that has been expected from climate models 

(Guerreiro et al. 2018; Allan et al. 2014). Min et al. (2011), Zhang et al. (2013), and Fischer and 

Knutti (2016) have detected the intensification of precipitation extremes and attributed it to 

anthropogenic forcing. Overall, these results indicate that human influences have indeed already 

impacted global-scale precipitation. 

Polson et al. (2013b) and Polson and Hegerl (2017) have developed a method to track rainfall 

changes across the wettest and driest thirds of the tropics (following Liu and Allan 2013). This 

method splits the tropics into wet and dry regions for every season, and every climate model 

simulation and observational dataset and diagnoses how the rainfall in these shifting wet and dry 

regions changes over time.  Averaging across wet and dry parts of the distribution irrespective of 

their location circumvents uncertainty and model error in the location of precipitation features. It 

also avoids the problem that the ‘wet gets wetter, dry gets drier’ paradigm has only limited value 
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over land, since wet and dry regions can shift with seasons and variability, obscuring the signal 

(Greve et al., 2014, see also Feng and Zhang 2016). Polsen and Hegerl (2017) found that rainfall 

has increased in the wettest third of seasonal rainfall over time, while it has reduced in the driest 

third. These changes were detectable against internal climate variability. This approach is related 

to that of Marvel and Bonfils (2013) who tracked wet- and dry-region precipitation and 

circulation, and similarly detected a sharpening contrast.  

The present study refines and improves the method, and evaluates the mechanism of change 

in new climate models from the most recent Coupled Model Intercomparison Project (CMIP6; 

Eyring et al., 2016). It uses blended in situ and satellite data through 2019 and investigates more 

clearly the causes of observed precipitation change by applying a formal detection and 

attribution analysis. Section 2 discusses the data and models used in this study. The changes in 

wet- and dry-region precipitation are presented in Section 3 and detection and attribution 

techniques are employed in Section 4 to investigate the causes of these changes.  

2. Data  

This study primarily examines the satellite-gauge merged Global Precipitation Climatology 

Project (GPCP) gridded data set of monthly precipitation, version 2.3 (Adler et al., 2016, 2003). 

While GPCP data are available from January 1979 onwards, we follow previous studies (Gu and 

Adler, 2018, 2013; Polson and Hegerl, 2017) and advice from the data providers, and limit the 

analysis to the period after 1988 (Jan 1988 - December 2019), for which measurements from the 

Special Sensor Microwave/Imager (SSM/I) are available (although sensitivity studies are 

conducted using the full record). The latter have made precipitation retrievals more reliable, and 

are particularly successful over oceans, where the strongest and most robust signal is expected 

(Chadwick et al., 2013; Gu et al., 2016; Gu and Adler, 2018; Hegerl et al., 2015). Long-term 

observed stations over the ocean broadly support GPCP in the overlap period, although short-

term point measurements are noisy and agree with only 65% of gridboxes on the sign of 

precipitation sensitivity (Polson et al., 2016). 

We also evaluate the robustness of observed changes in GPCP by comparing to another 

observational dataset and reanalyses in the supplementary information. The satellite-gauge CPC 

Merged Analysis of Precipitation (CMAP, version 1911) (Xie and Arkin, 1997) is examined, 

however, analyses have shown that CMAP is less reliable over the tropical oceans than GPCP 
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(Yin et al., 2004), and may have spurious decadal trends (Xie, 2019; Yu et al., 2017). Three 

current-generation atmospheric reanalyses are evaluated and used to identify mechanisms of 

change: the European Centre for Medium-Range Weather Forecasts (ECMWF) Fifth generation 

of atmospheric reanalyses of the global climate (ERA5) (Hersbach et al. 2019) , the Modern-Era 

Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al. 

2017), and the Japan Meteorological Agency (JMA) 55-year Reanalysis (JRA-55) (Harada et al., 

2016; Kobayashi et al., 2015). These products have greatly improved hydrological cycle 

representation compared to deficiencies noted in earlier reanalyses (Trenberth et al., 2011), but 

still struggle to close the atmospheric moisture budget (Bosilovich et al., 2016; Hegerl et al., 

2015; Yu et al., 2017). 

In order to understand mechanisms of precipitation change and to derive fingerprints to 

attribute observed climate change to causes, CMIP6 model simulations (Eyring et al., 2016) are 

analysed, including Detection and Attribution MIP (DAMIP) single forcing simulations (Gillett 

et al., 2016). For the future projections, historical simulations are extended with CMIP6 

Scenario-MIP Shared Socioeconomic Pathway (SSP) (Gidden et al., 2019) simulations. A list of 

the simulations and models used is provided in Supp. Table 1; note that a smaller number of 

DAMIP single-forcing simulations are available compared to the Scenario-MIP runs. Monthly 

precipitation fields from the CMIP6 simulations and reanalysis products are spatially regridded 

(employing first-order conservative interpolation) to a regular 2.5°×2.5° latitude-longitude grid 

(the same as GPCP). 

 

3.  Precipitation changes in observations and CMIP6 simulations  

The tracking of wet and dry tropical regions broadly follows Polson and Hegerl (2017), and 

is performed separately for each individual dataset (observations and reanalyses) and each 

CMIP6 model ensemble member. For every month, all of the tropical gridboxes (30°S-30°N, n = 

3456) are ranked in ascending order of monthly total precipitation, and then categorised 

depending on their rank. The lower, middle and upper terciles (each containing a third of the 

ranked gridboxes) are designated as being the ‘dry’, ‘in-between’ and ‘wet’ regions, respectively; 

the upper decile (10%) is further designated as the ‘wettest’ region. Supp. Figure 1 provides a 
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snapshot of the average spatial distribution of wet and dry regions over this period and illustrates 

how these regions move throughout the year.  

In addition to these precipitation-ranked categories, two additional regions are defined based 

on a simple measure of the corresponding large-scale vertical motion of the gridboxes, the 

vertical pressure velocity at 500hPa (ω500).  For the reanalysis products (ERA5, MERRA-2 and 

JRA-55) and CMIP6 models, ω500 is bilinearly regridded from the monthly ⍵ field (from the 

same dataset); for the observational data (GPCP/CMAP), ω500 are taken from ERA5. Gridboxes 

with ω500 < 0 are classified as regions of large-scale ascent, while gridboxes with ω500 > 0 are 

classified as regions of large-scale descent. Finally, the monthly precipitation associated with 

each region’s group of gridboxes is averaged (with area-weighting) to form the time series of 

average monthly precipitation over each of the regions.  

Figure 1a summarises the observed (GPCP) and simulated (CMIP6) changes in precipitation 

during the reference period (1988-2019) for the different tropical regions.  Monthly anomalies 

are computed (by subtracting the monthly means across the 32 years) in order to remove the 

seasonal cycle, and then linear trends through the 384 monthly anomalies are calculated, with the 

resulting values plotted as change in rainfall in mm/year per decade. The change in precipitation 

is displayed against the mean value of rainfall over the same time period (1988-2019), thus the 

abscissa spans climatologically drier (lower values) to wetter (higher values) regions.  The GPCP 

observations show that climatologically wet regions have been getting wetter over this time 

period, with annual rainfall increasing ~34mm per decade (upper tercile) and almost ~60mm per 

decade (upper decile); dry-region annual rainfall is seen to be decreasing at ~2mm per decade. 

The CMIP6 suite of historical model simulations exhibit a similar wetting of wet regions and 

drying of dry regions over this period, albeit at a decreased rate (in the multi-model mean of 

means). The vast majority of ensemble members simulate increasing rainfall over the wet (and 

wettest) regions and decreasing rainfall over dry regions, indicating the robustness of an 

increasing wet-dry contrast in models, which is shown to be in agreement with observations. 

Figure 1 also indicates that the climatological mean precipitation in wet regions and dry regions 

is similar to that of large scale ascent and descent respectively (Allan and Soden, 2007; Emori 

and Brown, 2005). Comparable trends are also found, with regions of large-scale ascent 

Page 6 of 24AUTHOR SUBMITTED MANUSCRIPT - ERL-108080.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

7 

 

wettening and regions of descent drying in both observations and models, consistent with the 

theoretical paradigm of rainfall to increase in convergence zones and to decrease in subsidence 

regions (Chou et al., 2009; Held and Soden, 2006; Seager et al., 2010).   

The analysis of CMIP6 projections (Figure 1b) simulating the various future scenarios (SSPs) 

throughout the 21st century, indicates a continuing enhancement of rainfall in wet tropical 

regions, and a reduction over dry regions; 32 years of rainfall in the latter part of the simulation 

(2068-2099) is compared with the reference period. Every model ensemble member in the 

CMIP6 archive that is examined here (see Supp. Table 1) shows increasing rainfall in the wet 

and wettest regions, with larger increases (in general) seen in simulations with higher emission 

scenarios.  The increase in the wettest 10% of gridboxes (per decade) is substantially larger (in 

both observed trends and climate model projections) than the increase in the broader wet regions. 

Tendencies in precipitation in wet and dry regions in GPCP are broadly supported by those in 

other datasets, despite differences in absolute values and some outliers (The time series of 

observed annual precipitation (1988-2019) over various tropical regions is summarised in Supp. 

Figure 2, showing the two observational datasets and three reanalysis products).  Whilst there is 

broad qualitative agreement between the various datasets over the different tropical regions, a 

detailed intercomparison is beyond the scope of the current study. Our analysis therefore focuses 

hereafter on GPCP precipitation.   

The choice of the upper tercile for classifying the wet regions is supported by an analysis of 

the same CMIP6 simulations across all gridbox rank percentiles (Figure 2). Here the annual 

changes in rainfall are displayed in units of percent change (compared to the reference period) 

per decade. Decreases over the drier gridboxes are comparable (in %) to the increases over 

wetter gridboxes. While there are some differences between the individual ensemble members 

(shown by the thin lines), the multi-model mean (of means) differences (thick lines) between the 

future and reference periods indicates decreases in rainfall across the lower 60-70% of gridboxes, 

and increases across the upper 30-40%.  Although we henceforth concentrate our analysis on 

precipitation percentiles split into upper and lower terciles, and analyse the rainfall changes in 

them separately, the results are relatively insensitive to defining wet and dry regions in other 

ways that retain the climate model expectation of a different change in wet against dry regions 

(see discussion in Section 4).  
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The resulting time series of annual precipitation in wet and dry regions (monthly values 

smoothed by a 12-month running mean) shows that in model simulations, the rainfall in the wet 

regions increases from the 1960s to the end of the 21st century (Figure 3a&b). Although results 

for individual simulations are noisy, a clear increasing trend is visible and by the middle of the 

century the annual value of wet-region rainfall in nearly all model simulations is greater than in 

the reference period (1988-2019). Precipitation in the driest third decreases in the simulations, 

although the decrease is relatively smaller (than the increase in the wet regions) and by mid-

century many annual values still exceed the average rainfall over the reference period. The 

observed data lie largely but not entirely within the model range, and also show trends of 

increasing rainfall in wet regions and decreasing rainfall in dry regions (consistent with Figure 

1). 

 

4. Detection and attribution of observed precipitation change 

. Now we have shown that the wet regions are getting wetter and dry regions drier it is 

important to determine whether the observed change is significantly different from changes 

associated with climate variability and attribute its causes. To do this a detection and attribution 

analysis was carried out using the multi-model mean fingerprint of precipitation change. 

The fingerprint vector was composed of the time-series of wet- and dry-region rainfall over 

the satellite period, from both climate models (multi-model mean) and observations (as shown in 

Figure 3a and b). To account for the relative difference in magnitude of the change in the wet 

and dry regions, both the observations and the model simulations (including the control samples) 

are standardised by dividing the precipitation in the wet regions by the mean standard deviation 

(of the wet regions) from all control simulations; similarly the dry regions by the mean standard 

deviation of the dry regions. This is to avoid the larger magnitude of rainfall in wet regions 

dominating the analysis. In order to detect the model simulated change in observations, the 

multi-model running annual mean precipitation from the wet regions joined with the running 

annual mean precipitation from the dry regions (both for the period 1988-2019) is regressed onto 

the observations using a total least squares regression (Allen and Stott, 2003). Under the 

assumption of linear additivity of the forcings (which may be affected by responses to 

atmospheric chemistry, particularly ozone Marvel et al., 2015, however here it is assumed 
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changes are largely unaffected by this in the tropics), the true observed climate response (𝑜𝑏𝑠) 

can be expressed as a sum of the models’ responses to individual forcings (𝑚𝑜𝑑𝑖), scaled by 

respective scaling factors (𝛽
𝑖
) (Eq.1). The method accounts for noise due to internal variability 

in the observations, 𝜈0 and in the model response, 𝜈𝑖 (accounting for the finite ensemble size of 

the multi-model mean).  

 

𝑜𝑏𝑠 = ∑ 𝛽𝑖

𝑙

𝑖=1

(𝑚𝑜𝑑𝑖 −  𝜈𝑖) + 𝜈0 

[1] 

 

As the fingerprint already extracts a robust signal, no optimization has been conducted (see 

discussion in Polson et al. 2013b). A confidence interval for scaling factors describes the range 

of magnitudes of the model expected signal that is consistent with observations. A model 

simulated response is considered to be detected if the confidence interval is significantly greater 

than 0 and is found to be consistent with the observed change if the interval contains 1, since this 

would indicate that it does not need to be scaled up or down to match the observations. The 

confidence interval is calculated using two different techniques: 

The first method follows Polson and Hegerl (2017) (hereafter noise sampling, following the 

notation in DelSole et al. 2019) and calculates the confidence interval by adding randomly 

selected samples of pre-industrial control simulations onto the noise-reduced fingerprints of the 

observations and the model. Each time a scaling factor, 𝛽
𝒊
, is recalculated, and a 5-95% interval 

is then estimated from the distribution of values. To account for a potential underestimate of 

variability in model control simulations (see Zhang et al. 2007) the confidence intervals are also 

re-calculated using control samples with doubled variance (as in Polson et al., 2013b; Polson and 

Hegerl, 2017).  Noise sampling has been critiqued as it may underestimate small, noisy, signals 

(DelSole et al., 2019), although aggregation of results into wet and dry regions should avoid low 

signal-to-noise ratios. However, in order to address the potential underestimate of uncertainty, a 

bootstrap method has also been employed. Following DelSole et al. (2019), the regression 

analysis is repeated using arrays formed from the joint time series of wet and dry regions, in the 

same way as before, but using unsmoothed monthly-values. The confidence interval is calculated 

by randomly sampling, with replacement, pairs of monthly values from the arrays of 

observations and model fingerprints to form new arrays the same length as the originals. A new 
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scaling factor is then calculated by regressing the resampled model onto the resampled 

observations. This process is repeated 10,000 times and a 5-95% confidence interval is estimated 

from the distribution. 

Results show that the historical forced signal is detectable and highly significant irrespective 

of the method by which uncertainty is estimated, and whether doubling the climate model noise 

variance (Figure 3c). The best estimate signal magnitude is between 1 and 2, indicating that to 

match the satellite data, the multi-model mean  simulated precipitation signal needs to be inflated 

– significantly so in all estimates, consistent with previous studies using CMIP3 and CMIP5 

models (Polson et al. 2013b; Polson and Hegerl 2017; Min et al. 2011). This is supported by 

Figure 4a which shows that the observed trends are outside what could be expected from internal 

variability alone (as sampled by piControl model simulations), in both wet and dry regions and 

are at the extreme edges of the range in historically forced simulations (see also Figure 1a),. This 

suggests that the observed change is also larger than individual model simulations.   

Results of our detection and attribution study are broadly consistent when including the data 

from 1980, although the signal amplitude is even bigger early on (Supp. Figure 5). Our results 

are also similar if the analysis is conducted on annual mean values calculated from seasonal 

means (instead of monthly) as in previous studies (Min et al., 2011; Polson et al., 2013b; Polson 

and Hegerl, 2017) (Supp. Figure 3). 

In order to evaluate whether climate model internal variability is consistent with the observed 

changes, an estimate of the internal variability, ν, in the observations (the residual variability) is 

calculated by subtracting the scaled model mean results, accounting for the internal variability in 

the model simulations using equation 2 (following Schurer et al., 2015) . 

 

𝜈 =
𝑜𝑏𝑠− 𝛽 𝑀𝑜𝑑

1+𝛽2/𝑛𝑒𝑛𝑠
                                                 

[2], 

  

where 𝑛𝑒𝑛𝑠 is the number of model simulations used to calculate the multi-model mean. Supp. 

Figure 6 shows that the regression residual (eqn 1; purple in figure) is within the range of some 

climate model control simulation trends, although for wet regions, the residual is greater than the 

mean model variability and is larger than the variability in many of the models.  This potential 

underestimate of the variability in model simulations could result in over-confident confidence 
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intervals in the noise sampling analysis, and provides justification for our choice to repeat the 

analysis with control simulations with doubled variance. 

Motivated by the expected fingerprint of change in model simulations (Figure 2) and 

following previous work by Polson et al (2013b) and Polson and Hegerl (2017), the wet regions 

were defined as the wettest third and the dry regions the driest third (see section 3). Other studies 

have used slightly different definitions, for example Liu and Allen (2013) defined the wet 

regions as the wettest 30% and the driest regions as the driest 70%, while Gu and Adler (2018) 

also defined the wet regions as the wettest 30% and dry as the region between 5 and 30%. The 

detection and attribution analysis has been repeated with these choices as well as several 

alternatives; the results are found to be insensitive to the precise definition of ‘wet’ and ‘dry’ 

(Supp. Figure 8). 

We have now determined that there is a significant effect of external forcing on GPCP 

precipitation. To address the causes of this observed change over the most recent 32-year period 

requires the analysis of individually forced climate model simulations. Supp. Figure 4 shows that 

greenhouse gases are expected to have caused a clear wettening trend in wet regions and drying 

trend in dry regions, both over the historical period (Figure 4b) and continuing into the future. 

Anthropogenic aerosol responses show relatively little precipitation change in dry regions, 

although they show a reduction in wet regions particularly prior to 1980, and a recovery in the 

second half of the 21st century. However during the period 1988-2019, the tropics wide trend 

due to anthropogenic aerosols is relatively flat (Figure 4b), suggesting that the response to 

anthropogenic factors will be dominated by greenhouse gases emissions during this time. The 

response to natural forcing (which includes changes in solar variability and volcanic eruptions) is 

also flat apart from a sharp reduction and subsequent recovery in wet regions following historical 

volcanic eruptions (Agung in March 1963, El Chichon in April 1982 and Pinatubo in June 1991). 

This is consistent with analysis of volcanic model simulations and detectable decrease in flow in 

rivers in wet regions (Iles and Hegerl 2017). Note that the timeseries of rainfall in wet regions in 

GPCP shows a noisy dip around 1991 (Figure 3) consistent with historically forced climate 

simulations. Because Mount Pinatubo erupted early on in our analysis period, recovery from it 

causes a wettening trend in wet regions (Figure 4c) which combined with the anthropogenic 

trend over this period explains the modelled all-forced wettening trend seen in Figure 4a.  
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 In order to determine whether the effect of anthropogenic forcing is detectable or whether 

the response to natural forcings alone is sufficient to explain the observations, a two signal multi-

linear regression is carried out using multi-model mean fingerprints from model simulations with 

all forcings and with just natural forcings. Only models which have contributed to both model 

experiments are used in the analysis which resulted in only 28 simulations for each experiment. 

From these, scaling factors with confidence intervals are calculated for anthropogenic forcings 

and natural forcings separately (following Tett et al 2002), and both are found to be detectable 

(Figure 3d), confirming a role for both anthropogenic forcings and natural forcings (which will 

be dominated by the response to the Pinatubo eruption) during this period. Due to the short-term 

nature of the volcanic forcing, the signal-to-noise ratio is only strong for a small portion of the 

record; hence, the bootstrap method cannot be used in this analysis. Multiplying the model-mean 

trend by the calculated scaling factors allows for an estimate of the attributable contribution to 

the observed trend. Figures 4e and f shows that wet trends are largely caused by anthropogenic 

factors with a smaller contribution from natural forcings. The forced contribution to the trend in 

dry regions is found to be smaller but is still dominated by anthropogenic forcings.     

There is some evidence that the response to both forcings is significantly larger in 

observations than expected from the multi-model mean fingerprint, however due to the large 

uncertainty in this analysis this conclusion is not significant for the response to anthropogenic 

forcings in the doubled variance case. Supp. Figure 7 shows that in the regression analysis the 

scaling factors for the two signals (anthropogenic forcing and natural forcings) have a slight 

inverse relationship, that is a larger response to natural forcings is consistent with a lesser 

response to anthropogenic forcing and vice versa, although the response to anthropogenic forcing 

remains clearly detectible. Thus an anthropogenic scaling factor less than or equal to ‘1’, 

(indicating that the response to anthropogenic forcings is consistent or smaller than the observed 

magnitude) is very unlikely and would require that the response to natural forcings is several 

times larger than the current modelled response. The attribution to anthropogenic forcings is 

further strengthened by Supp. Figure 5, which shows that even if the analysis period commenced 

later, after the effect of the 1991 Pinatubo volcanic eruption had dissipated (e.g. after 1994), the 

historical change would still be detectable in observations.  
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5. Conclusions 

In summary, there is a clear and detectable sharpening of the contrast between wet and dry 

regions in blended satellite / in situ precipitation records, which follows expectations from 

climate model simulations and is supported by process understanding of increased rainfall over 

ascending regions. The effects of natural and anthropogenic forcings are both detectable with the 

largest contribution likely due to greenhouse gas increases, with a smaller and shorter-lived 

increase due to the recovery from the Pinatubo eruption of 1991. However, detection and 

attribution results show a larger response to these external forcings in observations than expected 

from the multi-model mean simulation. The observed drying trend in dry regions is also larger 

than in all individual historically-forced simulations, whereas the observed increasing trend in 

wet regions is stronger than in all but 8 out of 58 model simulations (all from only 2 models). 

This might be partly related to a stronger rainfall response to volcanism (see also Iles and Hegerl, 

2015) but our results also support a stronger than modelled response to anthropogenic forcings. 

This could potentially indicate an underestimate of rainfall change in many climate models, but 

there might also be a role of observational uncertainty. Our results provide powerful evidence 

that the expected signal of an intensification of the low-latitude water cycle is already underway, 

and may be larger than expected. In order to make this result regionally relevant, changes in 

circulation and effects of regional influences over land need to be better understood.   
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Figure 1 – Observed trends (a) and projected changes (b) in the total annual rainfall (mm/year) 

over several tropical regions, plotted against the reference period (1988-2019) rainfall. The upper 

panel (a) shows the 32-yr (1988-2019) trend in the monthly anomalies of rainfall averaged over 

different regions (depicted by various shapes) in GPCP observations (black) and CMIP6 models 

(green – all tropics, brown – dry regions, red – descending regions, light blue – ascending 

regions, blue – wet regions, and purple – wettest regions), using joint Historical (1988-2014) and 

SSP-245 (2015-2019) simulations (18 models, 51 members). The lower panel (b) shows the 

projected changes in future (2068-2099) rainfall compared to the reference period for four sets of 

CMIP6 simulations (SSP-126, SSP-245, SSP-370 and SSP-585; different colours) over the same 

regions (shapes) as depicted in (a). The dry (lowest tercile), wet (highest tercile), and wettest 

(highest decile) regions are defined by the rank of monthly total rainfall across all tropical (30°S-

30°N) gridboxes and averaged; regions of large-scale descent and ascent are defined by the 
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corresponding gridboxes with positive and negative monthly mean vertical pressure velocity at 

500hPa, respectively. The ERA5 reanalysis is used to determine the descending and ascending 

regions for the observations. 

 

 

 

 

Figure 2 – Simulated changes in future (2068-2099) rainfall compared to the reference period 

(1988-2019) from four sets of CMIP6 simulations (SSP-126, SSP-245, SSP-370 and SSP-585). 

The tropical gridboxes (30°S-30°N, n = 3456) are ranked in ascending order of total monthly 

rainfall (for each month separately), and then averaged to compute the mean rainfall at each rank 

(for every model ensemble member).  Thick lines show the difference (% change in rainfall per 

decade) in the multi-model mean of model ensemble means; thin lines show the individual 

ensemble members. The CMIP6 models included are listed in Supp. Table 1. 
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Figure 3 – Wet (a) and dry (b) region tropical mean (30°S-30°N) annual precipitation anomalies 

with respect to 1988-2019 (mm) for observations (GPCP - in black) and CMIP6 model 

simulations (single simulations light blue/pink with multi-model mean in dark blue/red). The 

model simulations follow the SSP245 scenario from 2015-2100. Wet- and dry-region annual 

values are calculated as the running mean over 12 months. Scaling factors (right) indicate the 

magnitude of the multi-model mean fingerprint in observations and are calculated for the 

combination of the wet- and dry-region mean. Results in (c) are for a one-signal analysis 

regressing the all-forced simulations onto the observations, using two different analysis methods. 

58 model simulations are used in (c) and 51 in (a) and (b) (See table S1 for details). Results in 

(d) are for a two-signal regression (with 28 simulations used for each signal) and attribute 

observed changes into anthropogenic and natural contributions, using just the noise sampling 

analysis method.   
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Figure 4 – Normalised histograms of precipitation trends in wet (panels a and c) and dry (panels 

b and d) regions (mm per decade) over the period 1988-2019. Black vertical line shows the 

observed trend in GPCP. Histograms show trends in model simulations, with the corresponding 
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horizontal line the 5-95% range, and the circle the median value. In all panels grey indicates 

trends in control simulations. The top panels show results for models with all forcings, and the 

middle panels show results for models with single forcings. Panels e and f show the attributed 

trends due to only anthropogenic forcings and only natural forcings calculated using the scaling 

factors from the 2 signal detection and attribution analysis in figure 3d to scale the multi-model-

mean trends. Wide bars indicate the best estimate and the narrower lines their 5-95% uncertainty 

range.  
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