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A B S T R A C T   

Global warming has clearly affected the occurrence of extreme events in recent years. Here, we assess changes in 
the frequency of temperature extremes and their causes, using percentile-based indices. Cold extremes are 
defined as temperatures below the 10th percentile of daily minimum (TN10) and maximum (TX10) temperatures 
while hot extremes exceed the 90th percentile of daily minimum (TN90) and maximum (TX90) temperatures. We 
analyze Berkeley Earth Surface Temperature (BEST) for observed changes in the last four decades 1981-2020, for 
two extended seasons, boreal summer April–September (AMJJAS) and boreal winter October–March (ONDJFM), 
and evaluate results using several reanalysis data sets. For the attribution of causes we use CMIP6 climate model 
simulations, analyzing natural-only and anthropogenic-only forcings. We use an attribution method that ac
counts for climate modeling uncertainty in both amplitude and pattern of responses. 

The observations show detectable changes in both cold and hot extreme temperatures. Hot extremes have 
increased in all regions and in both seasons while cold extremes have decreased over the past decades. Our 
attribution analysis revealed anthropogenic forcings are robustly detectable and the main drivers of observed 
changes in all indices for all regions, consistently in all data sets. Contributions from natural forcings are found 
small and detectable only in a few regions mainly for daytime cold extremes in ONDJFM. Anthropogenic forcing 
contributed to an increase of 3.4 days per decade in TN90 and of 2.7 days per decade in TX90, on average, at the 
global scale. Regionally, the anthropogenic contribution caused a range of decrease of 2–4.7 days per decade in 
TN10, 1.5–3.6 days per decade in TX10 while it caused an increase of 2.2–4.8 days per decade for TN90 and 
2–3.3 days per decade in TX90. Anthropogenic-only warming in ONDJFM is slightly less than in AMJJAS.   

1. Introduction 

Human influence on the climate system is a well-established fact, and 
is unequivocally the primary cause of increasing global warming (IPCC, 
2014, 2021). In addition to human-induced changes to the mean climate 
state, climate extremes have also been changing in terms of magnitude 
or frequency with large impacts on humans and ecosystems (Seneviratne 
et al., 2021). 

Attribution science determines the causes of detected changes. The 
Intergovernmental Panel on Climate Change (IPCC) defines attribution 
as “the process of evaluating the relative contributions of multiple causal 
factors to an observed change in climate variables (e.g., global surface 
temperature, global mean sea level change), or to the occurrence of 

extreme weather or climate-related events” (IPCC, 2021). The attribu
tion of change in climate extremes assesses to what extent 
human-induced climate change has contributed to the magnitude or 
occurrence probability of extreme events and associated impacts (Stott 
et al., 2016). Attribution studies can provide input to inform climate 
change adaptation and mitigation measures as well as quantitative es
timates for climate litigation (Allen, 2003; Stott et al., 2016). These 
studies can also help the public understand whether, and to what extent, 
changes in climate extremes are caused by human activity (Jézéquel 
et al., 2020). 

Anthropogenic forcing has been attributed as the main driver of the 
observed increase in global mean temperature with an extremely high 
level of confidence (Hegerl et al., 1996, 1997, 2019; Gillett et al., 2021). 
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The IPCC’s recent Sixth Assessment Report (AR6) states “The likely 
range of human-induced warming in global-mean surface air tempera
ture (GSAT) in 2010–2019 relative to 1850–1900 is 0.8◦C–1.3 ◦C, 
encompassing the observed warming of 0.9◦C–1.2 ◦C, while the change 
attributable to natural forcings is only − 0.1 ◦C to 0.1 ◦C” (IPCC, 2021). 
In addition, extreme temperatures and warm spells have shown signif
icant change in probability, magnitude, or duration in almost all regions 
of the world (Perkins-Kirkpatrick and Lewis, 2020). Different metrics 
indicate significant changes in cold and hot temperature extremes in 
different parts of the world at different spatiotemporal scales (Morak 
et al., 2011; Cowan et al., 2014; Christidis et al., 2015; Fischer and 
Knutti, 2015; Alexander, 2016; Dong et al., 2017, 2018; Li et al., 2018; 
Yin et al., 2019; Engdaw et al., 2021; Tan et al., 2021). Anthropogenic 
forcing is the main contributor to changes in mean temperature (Hegerl 
et al., 2019; Gillett et al., 2021), its seasonality (Duan et al., 2019) and 
extreme temperatures (Fischer and Knutti, 2015; Stott et al., 2016; 
Dittus et al., 2016; Li et al., 2018; Dong et al., 2018; Yin et al., 2019; 
Christidis et al., 2020). The contribution of anthropogenic forcing is 
quasi-linearly increasing with time, as the atmospheric concentration of 
greenhouse gases increases due to emissions from fossil fuels. 

Climate model simulations of the sixth Coupled Model Intercom
parison Project (CMIP6, Eyring et al., 2016) have recently been made 
available for analysing past climate and future projections. Improve
ments in CMIP6 climate models include higher spatial resolution, 
improved parameterizations (e.g., clouds), and integration of additional 
Earth system processes and components such as improved sea ice 
models, and inclusion of nutrient limitations in the terrestrial carbon 
cycle (Eyring et al., 2016). However, the improvement in performance is 
less clear, and there is a wider range of equilibrium climate sensitivity 
(Zelinka et al., 2020). The IPCC AR6 states with very high confidence 
that “The CMIP6 model ensemble reproduces the observed historical 
global surface temperature trend and variability with biases small 
enough to support detection and attribution of human-induced warm
ing”. Besides the improved developments of CMIP6 climate models from 
their predecessors, temperature is among those variables for which the 
models show the highest pattern correlation with observations (Eyring 
et al., 2021). CMIP6 climate models realistically represent temperature 
extremes and reliably reproduce statistics of extremes in observations 
(IPCC, 2021; van Oldenborgh et al., 2021). The performance of CMIP6 
models in simulating extreme temperatures has been evaluated in recent 
studies: for different regions globally (Chen et al., 2020; Kim et al., 2020; 
Li et al., 2020; Wu et al., 2021, IPCC, 2021), and for continents including 
Australia (Deng et al., 2021), Northern America and Europe (Thorar
insdottir et al., 2020; Masud et al., 2021), and Southern America 
(Almazroui et al., 2021). These studies indicate that CMIP6 models 
simulate extreme temperatures reasonably well, with modest improve
ment over their predecessors (CMIP5), although the improvements vary 
depending on the aspect of interest (spatial patterns, temporal scales, 
and indices). Comparative studies of model performance have shown 
that the spread in performance among models is much smaller in CMIP6 
than CMIP5 (Chen et al., 2020). CMIP6 models are performing quite well 
in reproducing the magnitudes and spatial patterns of hot temperature 
extremes and particularly of cold extremes (IPCC, 2021), which may 
have been underestimated by the CMIP5 models in previous studies (Yin 
et al., 2019). CMIP6 models are performing quite well in reproducing 
the magnitudes and spatial patterns of hot temperature extremes and 
particularly of cold extremes (IPCC, 2021). This might be due to better 
representation of underlying processes in CMIP6 such as seasonal and 
diurnal variability, and synoptic-scale variability (Di Luca et al., 2020; 
IPCC, 2021). Furthermore, the CMIP6 models simulate the temporal 
evolution of extreme temperatures well (Wu et al., 2021). In addition to 
improvements in reproducing multiple aspects of temperature extremes 
in CMIP6 models, also the representation of natural forcing has 
improved which is an essential prerequisite for reproducible and reliable 
attribution statements. The development in the CMIP6 generation of 
climate models benefits the detection and attribution of temperature 

extremes. Considering these improvements, CMIP6 climate models are 
used to attribute changes in intensity of temperature extremes (Gillett 
et al., 2021, IPCC, 2021). 

In this study, we analyze and attribute changes in the frequency of 
temperature extremes using CMIP6 simulations. We use gridded obser
vational and reanalysis data, as this allows to calculate indices for the 
frequency of extremes from grid point values, which renders results 
more comparable to climate model data, while gridded indices of ex
tremes first calculate station-based indices and then are gridded (e.g., 
Dunn et al., 2020). We then attribute the causes of observed changes to a 
combination of natural and anthropogenic forcings. We apply a recent 
detection and attribution method that accounts for uncertainty in 
pattern and amplitude of the forced response to evaluate the cause of 
changes in the frequency of temperature extremes at global and regional 
scales. Thus, in this paper we focus on changes in the frequency of 
temperature extremes, using observational data and reanalyses, and 
relying on new CMIP6 simulations. We focus on the past four decades, a 
period of strong warming, as reanalysis data are more homogeneous 
over the satellite era. Our results provide compelling evidence that most 
of the significant changes in the frequency of hot and cold days are due 
to anthropogenic forcing, with a detectable additional contribution by 
natural forcing in cold extremes in some regions, largely due to the re
covery from the Mount Pinatubo eruption. 

2. Data and methods 

2.1. Observational and model data 

The Berkeley Earth Surface Temperature (BEST) is the observational 
data set used in this study and available at http://berkeleyearth.org/ 
(Rohde et al., 2013b). BEST uses all globally available daily recorded 
station data from 14 databases of the major temperature data recon
struction groups, including the Climatic Research Unit of the University 
of East Anglia (CRU), the National Aeronautics and Space Administra
tion Goddard Institute for Space Studies (NASA GISS), and the National 
Oceanic and Atmospheric Administration (NOAA) (Rohde et al., 2013a). 
Station data are interpolated to 1o X 1o grid resolution using a Kriging 
interpolation technique as the station coverage varies with time and 
regions. The spatial coverage has increased to 95% and to 99.9% of 
Earth’s surface in 1960 and 2015, respectively (Rohde and Hausfather, 
2020). Although the BEST data set has a good coverage for most of the 
Earth’s surface in the analysis period (1981-2020), we note the influence 
of data sparseness on the results, which is addressed by kriging, e.g., 
interpolation with neighbouring stations. Antarctica is the region where 
BEST data coverage is most scarce (IPCC, 2021). 

Some detection and attribution studies of changes in (temperature) 
extremes (for example, Hu et al., 2020; Seong et al., 2021) used different 
versions of the Hadley Center’s HadEX observational data set (Alexander 
et al., 2006; Donat et al., 2013; Dunn et al., 2020, https://www.meto 
ffice.gov.uk/hadobs/hadex3/). Extreme indices in HadEX are 
computed at point-level from station data that are then gridded using an 
angular-distance weighting method. In this study, we compute indices at 
grid level using daily gridded observations which enables direct com
parison of change in the frequency of extremes between grid point based 
indices from BEST, reanalysis data and models (Dunn et al., 2020). 

However, for further comparison with BEST, we also used HadEX3 
data for selected regions where station data are densely available. 

We assess the robustness of results from the BEST data set by alter
natively using three state-of-the-art reanalysis data sets; National 
Oceanic Atmospheric Administration’s 20 century reanalysis version 3 
(20C; Slivinski et al., 2021; https://psl.noaa.gov/data/20thC_Rean/), 
the European Centre for Medium-Range Weather Forecasts Reanalysis 5 
(ERA5; Hersbach et al., 2020, https://cds.climate.copernicus. 
eu/cdsapp#!/home), and the Japanese Meteorological Agency’s 
55-year reanalysis (JRA55; Kobayashi et al., 2015, https://jra.kishou. 
go.jp/JRA-55/index_en.html), as reanalyses infill data gaps 
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dynamically, while BEST does so statistically. The 20C, ERA5 and JRA55 
data sets have 1o X 1o, 0.25o X 0.25o and 1.25o X 1.25o grid resolutions, 
respectively. The 20C reanalysis is available until 2015 while all the 
other data sets are available until 2020, hence 20C is here only used for 
evaluation of the other, longer datasets. Trends in reanalysis data sets 
are potentially affected by changes in the data stream, which is more 
consistent with time for 20C and ERA reanalyses than JRA55. Un
certainties are different between these data sets and hence we consider 
their combined use as a suitable robustness test. 

The robustness of BEST and reanalyses data sets is higher since the 
1980s because the global observing system improved substantially and 
more observations became available with better coverage in time and 
space for most geographic regions (including known data-scarce re
gions), and also satellite data being assimilated in reanalyses (e.g., 
Hersbach et al., 2020; Kobayashi et al., 2015; Rohde et al., 2013). 
Therefore, we use the period 1981-2020 based on more homogenous 
data sets for our attribution study, which can be conducted for all 
geographic regions over land. The chosen analysis period enables, when 
compared with attribution studies using extended observations back to 
1950 but only for regions where stations have 70% data, additionally 
about a billion people to benefit from attribution information to 
loss-and-damage negotiations (Thompson and Otto, 2015) and climate 
change litigation. 

A list of the CMIP6 model simulations used in the analysis is pre
sented in Table 1. All-forcing and natural-only forcing simulations of 
daily maximum and minimum temperatures from CMIP6 models are 
accessed from the Earth grid federation website via the Center for 
Environmental Data Analysis (CEDA) node (https://esgf-index1.ceda. 
ac.uk/search/cmip6-ceda/). Natural-only forcing simulations are 
available until 2020; historical all-forcing simulations are only available 
until 2014, and are extended to 2020 using the highest-emissions sce
nario (SSP5-8.5) simulations. We used CMIP6 models that had both 
natural-only and all-forcing simulations available over the extent of our 
analysis period. Although additional all-forcing simulations have been 
recently released, only a few models had natural-only forcing simula
tions at the time of this study. For our analysis, natural-only forcing 
simulations are subtracted from the all-forcing simulations of the 
respective models to obtain anthropogenic-only forcing simulations. 

2.2. Calculation of temperature extremes 

Temperature extremes are defined as exceedances of percentile- 
based thresholds. The 10th and 90th percentiles are computed for 
both daily maximum and daily minimum temperatures using all years in 
the analysis period 1981-2020. Using the full 40-yr timeseries as the 
reference period, and applying a moderate 15-day smoothing window to 
the thresholds, ensures homogeneity and robustness of exceedance rate 
estimates across regions (Zhang et al., 2005). The frequency of cold 
extremes is quantified as the percentage of days below the 10th 
percentile of daily minimum (TN10) and maximum (TX10) tempera
tures, while that of hot extremes is the percentage of days exceeding the 
90th percentile of daily minimum (TN90) and maximum (TX90) tem
peratures. These extremes are analyzed over extended seasons: boreal 

summer from April to September (AMJJAS), and boreal winter from 
October to March (ONDJFM). The indices are computed for the BEST 
observational data, reanalysis data as well as the natural-only forced 
simulations and anthropogenic-only forced simulations of the CMIP6 
climate models. 

The computation of daily temperature extremes is performed at the 
grid point level after having regridded all models to a 1◦ × 1◦ grid. 
Dimension reduction is applied to indices computed from both the ob
servations (Y) and simulated forcings (Xi) by decadal and regional 
averaging. Cosine weighting of latitudes is used in regional averaging, as 
we analyze several regions: global, the northern hemisphere, the 
southern hemisphere, and an additional 12 regions over the continents 
(see Table 2 and Fig. 1). This follows earlier literature (Zwiers et al., 
2011; Morak et al., 2013; Zhang et al., 2013; IPCC, 2014) using large 
scale regions to track the detection of changes from global to hemi
spheric to large regional scales. The regions are large enough to ensure a 
high signal-to-noise ratio and robustness of results. A one percent 
change per decade in the occurrence of extremes in the extended 
AMJJAS and ONDJFM seasons is equivalent to 1.83 and 1.82 days per 
decade, respectively. 

2.3. Attribution method 

For the attribution of the causes of changes in temperature extremes 
we apply a statistical approach to climate change detection and attri
bution by Ribes et al. (2017) based on the CMIP6 model ensemble of 
opportunity. The assumption in most fingerprint attribution methods is 
that the spatiotemporal pattern of response to forcings is constrained by 
understanding of physical processes, while the more uncertain magni
tude of the response is estimated from observations using scaling factors. 
However, Hegerl and Zwiers (2011) discuss that a multi-model approach 
addresses climate models’ uncertainties only to some degree, and sub
stantial uncertainty exists also in the space-time pattern of response, 
particularly, in response to aerosols. Atmospheric circulation patterns, 
large-scale feedbacks, and large uncertainty in the forcings can also 
influence the spatiotemporal response patterns at regional and local 
spatial scales (Ribes et al., 2017; Suarez-Gutierrez et al., 2020; IPCC, 
2021). Bayesian methods can address response uncertainty (Schurer 
et al., 2018), but are computer intensive and require prior information. 
In this study, we use a new method (Ribes et al., 2017) that addresses 
both the uncertainty in the pattern and magnitude of the fingerprint, and 
assumes that the true observed response is within the range of climate 
model simulated responses. 

The method accounts for model uncertainty in both amplitude and 
patterns of response (arising from representation and parameterization 
of processes in the climate system), excluding sampling uncertainty, by 

Table 1 
List of the climate models and number of simulations analyzed for each of the 
different forcings.  

Models ALL NAT ANT 

ACCESS-ESM1 2 2 2 
BCC-CSM2 1 3 1 
CanESM5 10 10 10 
CNRM-CM6 3 3 3 
GFDL- ESM4 1 1 1 
IPSL- CM6A 1 1 1 
MIROC6 50 50 50 
MRI- ESM2 1 1 1  

Table 2 
Definition of regions used to assess the contribution of anthropogenic climate 
change to changes in temperature extremes (adapted from Zwiers et al., 2011; 
Morak et al., 2013; Zhang et al., 2013; IPCC, 2014).  

# Acronym Name of region Lat Lon 

1 GLOB Global All All 
2 NH Northern Hemisphere 0–90 N All 
3 SH Southern Hemisphere 90S–0 N All 
4 WNA Western North America 25–55 N 135–100 W 
5 ENA Eastern North America 25–55 N 100–45 W 
6 NNAM Northern North America 55–75 N 165–45 W 
7 SAM Southern America 60 S–5 N 100–40 W 
8 EU Europe 35–75 N 10 W–40 E 
9 NAS Northern Asia 45–80 N 10 E− 180 
10 SAS Southern Asia 10–45 N 40 E− 180 
11 NAF Northern Africa 15–30 N 20 W–40 E 
12 WAF Western Africa 15 S–15 N 20 W–20 E 
13 EAF Eastern Africa 15 S–15 N 20–55 E 
14 SAF Southern Africa 40–10 S 0–55 E 
15 AUS Australia New Zealand 60–10 S 100 E− 180  
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estimating the true simulated response of the climate system to forcings 
from observations. The method assumes a “models are statistically 
indistinguishable from the truth paradigm, where the difference be
tween any given model and the truth has the same distribution as the 
difference between any pair of models” (Ribes et al., 2017). The method 
addresses models’ uncertainties by decomposing the noise term in the 
true simulated responses to internal climate variability and model un
certainty. Note that the latter may also include forcing uncertainty, to 
the extent that the CMIP6 ensemble samples it. This method is based on 
the following statistical model: 

Y∗ =
∑nf

i=1
Xi

∗ (1)  

Y =Y∗ + εY (2)  

Xi =Xi
∗ + εXi (3)  

where Y∗ is the true response of the climate system to the sum of all 
external forcings in Eq. (1). Xi

∗ is the true response of the climate system 
to an individual forcing i with nf the number of forcings considered. Y 
denotes the observations in Eq. (2). Xi in Eq. (3) is the simulated 
response to forcing i. While the noise term εY ∼ N(0,ΣY) denotes the 
observational error and internal variability, the term εXi ∼ N(0,ΣXi) de
notes the uncertainty in model simulations that arises from internal 
variability, forcing uncertainty, and climate model uncertainty, with ΣY 
and ΣXi denoting the covariance matrices of observations and model 
simulations, respectively. Regularization is applied to provide a better 
estimate of the sample covariance matrices, as demonstrated by Ribes 
et al. (2009, 2017). 

The observed (Y) and simulated (Xi) responses of the climate and 
their estimated uncertainties are used to estimate true observed (Y∗) and 
true simulated (Xi

∗) forcings using maximum likelihood estimators and 
sampling uncertainty due to internal variability in that estimate. In 
order to diagnose the implications for causes of longer-term climate 
change, the algorithm of Ribes et al. (2017) applies linear trends. Thus, 
our analysis results in regional change in indices, and their uncertainty 
from the estimated true Y∗ and Xi

∗. The uncertainty ranges of the trends 
are estimated using 1 000 random samples that cover the range of sig
nals consistent with observations. 

The internal variability estimate used in the analysis is based on the 
difference of individual ensemble members from the ensemble mean, 
rescaled by √(n/n-1) where n is number of ensemble members (e.g., 
Ribes et al., 2013; Gillett et al., 2021). 

The consistency of the observed trends with internal climate vari
ability has been assessed using a Chi-square test (Ribes et al., 2017; de 

Abreu et al., 2019). The observed trends and internal climate variability 
all passed the consistency test. Details of the method is presented in 
Ribes et al. (2017) and its implementations in a Python package (http 
s://github.com/rafaelcabreu/attribution) is presented in de Abreu 
et al. (2019). 

3. Results 

3.1. Observed changes in temperature extremes and in simulated forcings 
by CMIP6 models 

3.1.1. Detected changes in cold and hot extremes 
The robustness assessment of BEST data set results followed a two- 

step procedure. First, we computed indices from observational BEST, 
and 20C, ERA5 and JRA55 reanalysis data sets for the available 
respective periods, and computed correlation coefficients between 
regionally averaged indices of BEST and the reanalysis data sets. Second, 
we compared detected changes in temperature extremes from BEST with 
those from ERA5 and JRA55 reanalysis data sets for the period 1981- 
2020. When changes are detectable in BEST and all the reanalysis data 
sets, we consider results robust. 

The high correlation coefficients (S1) show that BEST is well in 
agreement with the 20C, ERA5 and JRA55 reanalysis data sets for most 
of the indices and regions, although there is less agreement over regions 
in the Southern Hemisphere particularly for regions in Africa. This may 
be in part due to sparse data over Africa which are filled in by statistical 
methods in BEST and may not capture the true temperature variability 
and change, and highlights uncertainty in changes over Africa (see also 
Engdaw et al., 2021). 

Observed changes in the frequency of cold and hot temperature ex
tremes, from BEST (in black) and ERA5 (grey) and JRA55 (light grey) 
data sets, are plotted in Figs. 2 and 3, respectively. Observed changes in 
the BEST data set are generally similar with those in ERA5 and JRA55, 
although ERA5 and JRA55 shows a slightly smaller rate of change in 
some regions. Therefore, in addition to previous studies (Deng et al., 
2021; Perkins-Kirkpatrick and Lewis, 2020; Sippel et al., 2020) which 
used BEST for detection and attribution, our robustness assessments 
indicate that BEST agrees with 20C, ERA5 and JRA55 reanalysis data 
sets. We focus on results using the BEST data set for detection and 
attribution in the following sections, and discuss where detection and 
attribution results are different if using ERA5 and JRA55. 

Changes in cold temperature extremes computed from BEST data are 
shown in Fig. 2. Changes are clearly detectable in the inspected extreme 
indices for all regions and both seasons. Cold extreme temperature 
indices (TN10 and TX10) show detectable decreasing trends in all 

Fig. 1. Definition of regions used to assess the contribution of anthropogenic climate change to changes in temperature extremes. Adapted from literature (Zwiers 
et al., 2011; Morak et al., 2013; Zhang et al., 2013; IPCC, 2014). 
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regions and seasons, with larger decadal trends in AMJJAS than in the 
ONDJFM season. In addition to this, the variability of cold temperature 
extremes during AMJJAS is higher than that of respective indices in 
ONDJFM. Comparison of the indices shows that daytime cold extremes 
(TX10) have less variability than nighttime cold extremes (TN10) (not 
shown). 

All regions (see Table 2 for abbreviations of regions) show more than 
2% (3.5 days) per decade decrease in TN10, except SH, SAF, and AUS. 
Regions over Africa (WAF and EAF) experienced the highest decrease of 
more than 3% (5.5 days) per decade in TN10, and this behavior is 
generally robust against using ERA5 and JRA55 data sets (Fig. 2). All 
regions experienced a decrease of 1–2% (1.8–3.5 days) per decade in 
TX10 during AMJJAS while EU shows a decrease of more than 2.3% (4.2 
days) per decade. During ONDJFM, cold extremes showed a decrease of 
more than 1.4% (2.5 days) per decade in all regions, the NH, NNAM, 
SAM NAF, WAF and EAF regions show even 2–3.1% (3.5–5.6 days) per 
decade decrease in TN10. The decadal trend in TX10 ranges between 
− 0.9 and − 2% (− 1.6 to − 3.6 days) per decade in all regions. The lowest 
rate of decrease in cold extreme indices (regions) is observed over TN10 

(AUS), TX10 (WAF) during AMJJAS and TN10 (ENA), TX10 (AUS) 
during ONDJFM. Note that with warming the frequency of cold days 
decreases, and trends will saturate when values below the climatological 
10th percentile no longer occur. We also note that space-time averaging 
results using large regions and trends will ensure that data are reason
ably close to normally distributed. 

Hot extreme temperature indices (TN90 and TX90) from BEST in 
Fig. 3 show observed increasing decadal trends, in all regions and both 
seasons. Most regions experienced a higher than 2% (3.5 days) per 
decade increase in TN90 during AMJJAS. In the SH, SAF, and AUS, the 
observed increase is a bit smaller. The African regions NAF, WAF and 
EAF experienced the highest decadal trend of up to 3.2% (5.8 days) for 
TN90.1.7%, about 3 days (SH and AUS) is the lowest trend per decade of 
TX90 in AMJJAS while WNA, SAM, EU, SAS, and NAF experienced more 
than 2% (3.5 days) increase per decade. Decadal trends of hot temper
ature extremes observed in ONDJFM are slightly lower than in AMJJAS 
over the respective regions. The frequency increase of TN90 ranges from 
1% (1.8 days) per decade in WNA and ENA to 3.1% (5.7 days) in WAF. 
For TX90, the highest decadal trend is observed over WAF with 2.2% (4 

Fig. 2. Changes in cold temperature extreme indices (TN10 and TX10) during 1981-2020 for AMJJAS and ONDJFM seasons, shown for the investigated regions using 
observational BEST (black), ERA5 (grey) and JRA55 (light grey) reanalysis data sets. Error bars show 95 percentile confidence intervals. 

Fig. 3. Changes in hot temperature extreme indices (TN90 and TX90) during 1981-2020 for AMJJAS and ONDJFM seasons, shown for the investigated regions using 
observational BEST (black), ERA5 (grey) and JRA55 (light grey) reanalysis data sets. Error bars show 95 percentile confidence intervals. 
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days) increase per decade. TX90 trends are 1–2.2% (1.8–4 days) during 
ONDJFM. Due to the seasonal cycle, SH, SAF, SAM are regions where 
observed changes in cold extremes in ONDJFM are higher than AMJJAS. 

The magnitude of change of temperature extremes in AMJJAS is 
higher than in ONDJFM. In both seasons, nighttime extreme tempera
ture indices (TN10 and TN90) showed higher decadal trends than those 
of daytime extreme indices (TX10 and TX90). The highest decadal 
change in temperature extreme indices is observed over regions in Af
rica; NAF, WAF and EAF. This implies that climate change is adversely 
affecting less developed and vulnerable regions which in turn increases 
vulnerability. However, in these regions there is also substantial data 
uncertainty, reflected also in larger differences to results from reanalysis 
data. 

3.1.2. Temperature extremes in forcings simulated by CMIP6 models 
Time series of extreme temperature indices for AMJJAS are shown in 

Figs. 4–7 for the different analyzed regions. Note that the equivalent 
ONDJFM time series are shown in Supplementary Figs. S2–S5. The thick 
lines show the BEST observations (black) and the multi-model means of 
the natural-only (blue) and anthropogenic-only (red) forced CMIP6 
climate model simulations. Cold extreme temperature indices, TN10 
(Fig. 4) and TX10 (Fig. 5), computed from anthropogenically forced 
simulations show a decrease over the inspected period similar to the 
observations, while the changes in cold extremes due to natural forcings 
are very weak. The natural-only simulations clearly capture the short- 
term cooling signals due to volcanic eruptions – El Chichon early 1980 
and Pinatubo in early 1990 – in all regions with different magnitude and 
lifespan. Volcanic eruptions contribute to larger signal variability of cold 
extremes in natural-only forced simulations. The variability of cold night 
extremes (TN10) is higher than that of cold day extremes (TX10) in the 
climate forcing simulations. Indices of forced simulations show higher 
variability over land in the northern hemisphere and in regions located 
north of the equator. In ONDJFM, cold extreme temperature indices 
show relatively less variability than the AMJJAS cold extremes, TN10 in 
Fig. S2 and TX10 in Fig. S3. 

Hot temperature extremes during night (TN90) and during day 
(TX90) are shown in Figs. 6 and 7, respectively, for AMJJAS. Hot 

temperature extremes computed from observations and anthropogenic- 
forced simulations clearly show increasing trend signals over time in all 
regions. The influence of both volcanic eruptions is evident, with the 
reduction in incoming radiation cooling down hot extremes computed 
from natural-only simulations. The variability in nighttime hot extremes 
(TN90) is higher than in daytime hot extremes (TX90) in the climate 
simulations. The variability in TN90 strongly varies from region to re
gion. Changes in hot temperature extremes are smaller in ONDJFM 
compared to AMJJAS in all regions, for TN90 in Fig. S4 and TX90 in 
Fig. S5. 

3.2. Attribution of causes to changing temperature extremes 

Results of the attribution analysis on the causes of changing cold 
extremes and hot extremes are presented in Figs. 8 and 9, respectively, 
showing the contribution of anthropogenic (in red) and natural forcings 
(in blue) to the observed changes (in black). Changes are assessed based 
on observations of the BEST data set, which has been used also by other 
studies to evaluate climate models, to assess observed changes and to 
attribute detected changes (Deng et al., 2021; Perkins-Kirkpatrick and 
Lewis, 2020; Sippel et al., 2020) over all regions of the world. The period 
of analysis we used, 1981-2020, is the time of best coverage of meteo
rological stations. In addition, for assessing the robustness of results 
from BEST data, we conducted the analysis for ERA5 and JRA55 rean
alysis data sets, and found the results consistent (Figs. 8 and 9). For 
indices (in a region) computed from natural forcing, we consider sta
tistical significance when using observational BEST and at least one of 
the two reanalysis data sets to state natural forcing is robustly detect
able, while anthropogenic forcing is robustly detectable in all data sets 
for all indices and regions. However, we need to point out that inter
preting attribution results over regions known for data scarcity should 
be made with care. 

The observed changes in all temperature extremes in this analysis 
can be attributed to anthropogenic forcing, which contribute with a 
large magnitude to decadal trends in both seasons and all regions. The 
magnitudes vary with indices, regions, and seasons. 

Fig. 4. TN10 from BEST observations (solid black), ERA5 (dashed black), JRA55 (dash-dotted black), 20C (dash-dotted grey) reanalyses and multi-model means 
(thick, colored) of the CMIP6 simulations with anthropogenic (red) and natural (blue) forcings shown for the AMJJAS season. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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3.2.1. Cold extremes 
Anthropogenic forcing is responsible for a more than 1% (1.8 days) 

per decade change in AMJJAS TN10 in all regions. Regions in different 
continents experienced human-induced decrease in cold nights, on 
global-land (1.8%, 3.3 days per decade), Northern America (1.6%, 2.9 
days per decade), Europe (2%, 3.7 day per decade), Asia (1.7–2.2%, 
3–3.5 days per decade), and Africa (2.5%, 4.5 days per decade). AUS 
experienced the lowest anthropogenic-induced reduction (1%, 1.8 days 

per decade). During AMJJAS, the human-induced decrease in TX10 
reached 1.3–1.5%, (2.4–2.8 days) per decade for global land and 
Northern America and 1.2%, 1.5%, 1.7% (2.3, 2.7, 3.2 days) per decade 
for Africa, Asia, and EU, respectively. The largest anthropogenic con
tributions, of cold extremes in AMJJAS, are estimated over regions of 
EU, Asia and Africa. Although the pattern of regional changes of cold 
extremes during ONDJFM are similar to those in AMJJAS, the contri
bution of anthropogenic forcing to changes in cold extremes in ONDJFM 

Fig. 5. TX10 from BEST observations (solid black), ERA5 (dashed black), JRA55 (dash-dotted black), 20C (dash-dotted grey) reanalyses and multi-model means 
(thick, colored) of the CMIP6 simulations with anthropogenic (red) and natural (blue) forcings shown for the AMJJAS season. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. TN90 from BEST observations (solid black), ERA5 (dashed black), JRA55 (dash-dotted black), 20C (dash-dotted grey) reanalyses and multi-model means 
(thick, colored) of the CMIP6 simulations with anthropogenic (red) and natural (blue) forcings shown for the AMJJAS season. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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is smaller than in AMJJAS as for the total observed change. Anthropo
genic contributions for TN10 and TX10 in ONDJFM ranged between 0.9 
and 2.3% (1.7–4.1 days) and 0.7–1.4% (1.3–2.5 days) per decade, 
respectively. When cold extremes of both seasons are compared, cold 
extremes of the ONDJFM season show narrower uncertainty ranges. 
Further investigation of cold extremes for five selected regions, based on 
HadEX3 data availability (NNAM, WNA, ENA, EU, AUS), shows 
consistent results between our results based on BEST and ERA with re
sults using extremes indices from HadEX3 observations as presented in 
Fig. S6 of the supplementary material. This supports that results are 
robust to data uncertainty in well sampled regions. 

The contribution of natural forcings ranged between 0.5 and 1.2 days 
(TN10) and 0.4–1 days (TX10) per decade during AMJJAS, and between 
0.2 and 1.4 days (TN10) and 0.4–1.3 days (TX10) per decade decrease 
during ONDJFM. In ONDJFM, contributions of natural forcings are 

detectable, although not in all of the regions. Detectable natural forcings 
are robust to using ERA5 and JRA55 data sets instead. BEST and at least 
one of the reanalysis data sets (ERA5 and JRA55) agree in the detectable 
contribution of natural forcings in indices (regions) of ONDJFM’s TN10 
(NNAM and WNA) and ONDJFM’s TX10 (WNA, SAS, NAF, and WAF). 
Furthermore, all the data sets (BEST, ERA5 and JRA55) agree on the 
robust detectability of natural forcings in ONDJFM’s cold extremes: 
TN10 in WNA, and TX10 in WNA, SAS, NAF and WAF regions. Results 
for HadEX3 are consistent on the detectability of natural forcings for 
TN10 and TX10 in WNA. 

3.2.2. Hot extremes 
The contribution of anthropogenic forcings to hot extremes is the 

only detectable contributor to hot extremes in many regions, and much 
higher than the contribution of natural forcings in all regions and both 

Fig. 7. TX90 from BEST observations (solid black), ERA5 (dashed black), JRA55 (dash-dotted black), 20C (dash-dotted grey) reanalyses, and multi-model means 
(thick, colored) of the CMIP6 simulations with anthropogenic (red) and natural (blue) forcings shown for the AMJJAS season. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Contribution of natural (NAT, blue) and 
anthropogenic (ANT, red) forcings to the total 
observed changes (from BEST, in black as in Fig. 2) in 
cold temperature extreme indices (TN10 and TX10) 
during 1981-2020 for AMJJAS and ONDJFM seasons, 
shown for the investigated regions. In addition, 
changes detected from ERA5 (grey) with natural (sky 
blue) and anthropogenic (pink) contributions and 
changes detected from JRA55 (light grey) with nat
ural (light blue) and anthropogenic (orange) contri
butions are shown. Error bars show 95 percentile 
confidence intervals. (For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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seasons. The largest anthropogenic forcing contribution is detected in 
AMJJAS for changes in nighttime extremes as well as in daytime ex
tremes. Also, in ONDJFM, the anthropogenic contribution to changes in 
nighttime extremes is large. 

The anthropogenic contribution to decadal changes in hot extremes 
is estimated to be 1.2–2.6% (2.2–4.8 days) per decade for TN90, 1–1.8% 
(2–3.3 days) per decade for TX90 in AMJJAS. In ONDJFM, it is 0.7–2.3% 
(1.3–4.2 days) per decade for TN90, and 0.7–1.7% (1.3–3.1 days) per 
decade for TX90. The highest contributions of anthropogenic forcing to 
decadal changes in hot extremes are 2.6% (4.8 days) per decade for 
TN90 in WAF, 1.8% (3.3 days) per decade for TX90 in EU during 
AMJJAS, and during ONDJFM it is 2.3% (4.2 days) per decade for TN90 
in WAF and EAF and 1.7% (3 days) per decade for TX90 in SAM. 

The highest contribution of anthropogenic forcing is detected in 
Africa, while Northern America and Australia are continents where the 
lowest contributions of anthropogenic forcing to decadal changes of 
extreme temperatures are detected. Over the African continent, the 
observed decadal changes are large and the highest human-induced 
increase in temperature extremes is detected. Therefore, much atten
tion is needed in multiple aspects. For Australia, in addition to its warm 
mean climate, the detected anthropogenic contribution to hot extremes 
has contributed to an increase in climate-driven extreme events in the 
recent years. Similar to cold extremes, the uncertainty range of hot ex
tremes in ONDJFM is found smaller than in the AMJJAS season. 
Furthermore, the results on hot extremes are comparable with those 
from the HadEX3 data set in the selected regions as well (Fig. S7). 

Contributions from natural forcings range over 0.6–1 days per 
decade in AMJJAS for both hot extreme indices, while it is 0.35–1.8 days 
per decade for both TN90 and TX90 in ONDJFM. Some detectable 
contribution of natural forcings to changes in hot extremes are found in 
AUS for TX90 in AMJJAS, and WAF for TX90 in ONDJFM. Detected 
natural forcing contributions are about 0.5% (1 day) per decade for both 
cold and hot extremes, and even smaller in the ONDJFM season. 

The anthropogenic-forcing contribution to changes in all tempera
ture extremes is much larger in all regions than the contribution from 
natural forcings. The contribution of natural forcings is mainly detected 
in daytime cold temperature extremes. This might predominantly be due 
to updated solar irradiance and volcanic forcings, which were under
estimated in CMIP5 (Ridley et al., 2014; Santer et al., 2014; Lean, 2018; 
Fyfe et al., 2021), and due to improved variability in CMIP6 models. The 
attribution results for the changes detected for cold and hot temperature 
extremes using ERA5 and JRA55 data sets are included in Figs. 8 and 9, 
respectively, and are qualitatively similar with attribution results based 
on BEST data set. Observational BEST and at least one of the reanalysis 

data sets show detectable contribution of natural forcings for indices 
(regions) of AMJJAS’s TX90 (AUS) consistent with HadEX3 results, and 
of ONDJFM’s TX90 (WAF). Consistent detectability is found for HadEX3 
for AMJJAS’ TX90 (AUS). 

In addition, the regional contribution of anthropogenic and natural 
forcings to changes in TN90 in AMJJAS, based on the BEST data set, is 
demonstrated using a pie chart in Supplementary Fig. S8. Anthropogenic 
forcings’ contribution is larger in low latitude regions. 

4. Conclusion 

Temperature extremes observed in the last decades are assessed in 
observations from BEST data. Statistically significant changes have been 
detected in cold temperature extremes (TN10 and TX10) and in hot 
temperatures extremes (TN90 and TX90) over 1981–2020 in both 
extended AMJJAS and ONDJFM seasons and over all land regions. 
Overall, extremes (rate of change) show a decrease in TN10 (2-3% per 
decade), TX10 (1-2% per decade), and an increase in TN90 (2-3% per 
decade), TX90 (1–2.5% per decade) in the AMJJAS season and slightly 
less change in the ONDJFM season. Temperature extremes in AMJJAS 
showed higher decadal trends over tropical regions and the northern 
hemisphere, and lower trends for regions in the southern hemisphere. 
Regions in Africa, Asia/EU, and North America experienced the highest 
decadal changes in temperature extremes. 

Our attribution analysis, using CMIP6 climate model simulations, 
revealed that anthropogenic climate change is clearly the main 
contributor of detected changes in temperature extremes. High and 
detectable contributions of human-induced forcing are consistently 
found for all inspected extreme indices, in all regions and both seasons. 
The contributions of human-induced climate change for decrease in 
nighttime cold extremes (TN10) and increase in nighttime hot extremes 
(TN90) is about 1–2.5% per decade in both seasons, in all regions. While 
contributions estimated from the same forcing for decrease in daytime 
cold extremes (TX10) are between 0.7 and 1.7% per decade in both 
seasons, increase in daytime hot extremes (TX90) are estimated between 
1 and 1.8% per decade for AMJJAS and between 0.7 and 1.7% for 
ONDJFM season. These results are consistent with results from HadEX3 
data in selected regions with dense observations. 

In addition, our analysis revealed that natural forcings have only 
contributed to changes in temperature extremes to a minor extent and 
cannot explain the observed changes. Despite higher rate of changes 
detected in nighttime temperature extremes (TN10 and TN90), in both 
seasons and all regions, the contribution of natural forcings is detected 
predominantly in cold extreme temperatures (TN10 and TX10). The 

Fig. 9. Contribution of natural (NAT, blue) and 
anthropogenic (ANT, red) forcings to the total 
observed changes (from BEST, in black as in Fig. 2) in 
hot temperature extreme indices (TN90 and TX90) 
during 1981-2020 for AMJJAS and ONDJFM seasons, 
shown for the investigated regions. In addition, 
changes detected from ERA5 (grey) with natural (sky 
blue) and anthropogenic (pink) contributions and 
changes detected from JRA55 (light grey) with nat
ural (light blue) and anthropogenic (orange) contri
butions are shown. Error bars show 95 percentile 
confidence intervals. (For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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contributions attributed to natural forcings are about 0.5% (1 day) per 
decade for both cold and hot extreme indices in AMJJAS, and even 
smaller for indices in ONDJFM season. The observational BEST and at 
least one of the reanalysis data sets (ERA5 and JRA55) agree in the 
robustly detectable contribution of natural forcings in indices (regions) 
of ONDJFM’s TN10 (NNAM and WNA) and ONDJFM’s TX10 (WNA, 
SAS, NAF and WAF), AMJJAS’s TX90 (AUS) and ONDJFM’s TX90 
(WAF). All the data sets agree on the robustly detectable contribution of 
natural forcings to ONDJFM’s TX90 (WAF) and cold extremes of 
ONDJFM: TN10 in WNA, and TX10 in WNA, SAS, NAF and WAF regions. 

In summary, changes in cold (TN10 and TX10) and hot (TN90 and 
TX90) temperature extremes are detectable in all the regions and both 
AMJJAS and ONDJFM seasons. Detected changes in observational BEST 
and ERA5 and JRA55 reanalysis data sets are consistent for most of the 
regions. Our attribution analysis showed a detectable contribution from 
natural forcings in several regions, predominantly for daytime cold 
temperature extremes. Updated temperature data and forcings, and 
improved variability in CMIP6 models may have increased the detect
ability of natural forcing contributions. In addition, the agreement 
among the data sets we used, in some regions, shows the robustness of 
the detectable small contribution of natural forcings, although they 
cannot explain observed changes. While natural forcings contribute to 
the change in extremes in some regions, possibly due to the recovery 
from the eruption of Mount Pinatubo early in the record, natural forc
ings alone cannot explain the observed changes in extremes. Our results, 
based on the improved state-of-the-art CMIP6 models, show that 
anthropogenic forcings are detectable in all indices for all regions, 
consistently in all data sets. Furthermore, anthropogenic forcings are the 
main drivers and have contributed the most to the observed changes in 
temperature extremes in all regions. 
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