14 research outputs found

    Targeted long-read sequencing of the Ewing sarcoma 6p25.1 susceptibility locus identifies germline-somatic interactions with EWSR1-FLI1 binding

    Get PDF
    Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion

    No full text
    Comment in [Birth notice: a new bone sarcoma has been born]. [Bull Cancer. 2012]International audienceThe identification of subtype-specific translocations has revolutionized the diagnostics of sarcoma and has provided new insight into oncogenesis. We used RNA-seq to investigate samples from individuals diagnosed with small round cell tumors of bone, possibly Ewing sarcoma, but which lacked the canonical EWSR1-ETS translocation. A new fusion was observed between BCOR (encoding the BCL6 co-repressor) and CCNB3 (encoding the testis-specific cyclin B3) on the X chromosome. RNA-seq results were confirmed by RT-PCR and through cloning of the tumor-specific genomic translocation breakpoints. In total, 24 BCOR-CCNB3-positive tumors were identified among a series of 594 sarcoma cases. Gene profiling experiments indicated that BCOR-CCNB3-positive cases are biologically distinct from other sarcomas, particularly Ewing sarcoma. Finally, we show that CCNB3 immunohistochemistry is a powerful diagnostic marker for this subgroup of sarcoma and that overexpression of BCOR-CCNB3 or of truncated CCNB3 activates S phase in NIH3T3 cells. Thus, the intrachromosomal X-chromosome fusion described here represents a new subtype of bone sarcoma caused by a newly identified gene fusion mechanism

    Oral Etoposide and Trastuzumab Use for HER2-Positive Metastatic Breast Cancer: A Retrospective Study from the Institut Curie Hospitals

    No full text
    International audienceBackground: The TOP2A and ERBB2 genes are co-amplified in about 40% of HER2 positive (HER2+) breast cancers. Oral etoposide (VP16), an inhibitor of topoisomerase-II (encoded by TOP2A), has demonstrated clinical activity in metastatic breast cancer (MBC). The benefit of oral VP16 combined with trastuzumab (VP16-T) in HER2+ MBC has not yet been evaluated.Methods: Patients treated at the Institut Curie Hospitals with VP16-T for HER2+ MBC were retrieved by an in silico search. Progression-free survival (PFS), overall survival (OS), response rate, prolonged PFS (defined as at least 6 months), clinical benefit, and toxicity were assessed. The co-amplification of ERBB2 and TOP2A was assessed by shallow whole genome sequencing on tumor tissue whenever available.Results: Forty-three patients received VP16-T after a median number of six prior treatment lines for HER2+ MBC. Median PFS and OS were 2.9 months (95% CI [2.4–4.7]) and 11.3 months (95% CI [8.3–25.0]), respectively. Three patients had a complete response, while 12/40 (30%) experienced clinical benefit. Only three patients stopped treatment for toxicity. Seven (35%) patients displayed a TOP2A/ERBB2 co-amplification. No statistically significant correlation was found between outcome and TOP2A/ERBB2 co-amplification.Conclusion: Our analysis suggests a favorable efficacy and toxicity profile for VP16-T in patients with heavily pretreated HER2+ MBC

    Targeting the EWSR1-FLI1 Oncogene-Induced Protein Kinase PKC- Abolishes Ewing Sarcoma Growth in vivo

    No full text
    International audienceIdentification of druggable targets is a prerequisite for developing targeted therapies againstEwing sarcoma. We report the identification of Protein Kinase C Beta (PRKCB) as a proteinspecifically and highly expressed in Ewing sarcoma as compared to other pediatric cancers.Its transcriptional activation is directly regulated by the EWSR1-FLI1 oncogene. Gettinginsights in PRKCB activity we show that, together with PRKCA, it is responsible for thephosphorylation of histone H3T6, allowing global maintenance of H3K4 trimethylation on avariety of gene promoters. In the long term, PRKCB RNA interference induces apoptosis invitro. More importantly, in xenograft mice models, complete impairment of tumor engraftmentand even tumor regression were observed upon PRKCB inhibition, highlighting PRKCB as amost valuable therapeutic target. Deciphering PRKCB roles in Ewing sarcoma usingexpression profiling, we found a strong overlap with genes modulated by EWSR1-FLI1 andan involvement of RPKCB in regulating crucial signaling pathways. Altogether, we show thatPRKCB may have two important independent functions and should be considered as highlyvaluable for understanding Ewing sarcoma biology and as a promising target for newtherapeutic approaches in Ewing sarcoma

    Sequential genomic analysis using a multisample/multiplatform approach to better define rhabdomyosarcoma progression and relapse

    No full text
    Abstract The genomic spectrum of rhabdomyosarcoma (RMS) progression from primary to relapse is not fully understood. In this pilot study, we explore the sensitivity of various targeted and whole-genome NGS platforms in order to assess the best genomic approach of using liquid biopsy in future prospective clinical trials. Moreover, we investigate 35 paired primary/relapsed RMS from two contributing institutions, 18 fusion-positive (FP-RMS) and 17 fusion-negative RMS (FN-RMS) by either targeted DNA or whole exome sequencing (WES). In 10 cases, circulating tumor DNA (ctDNA) from multiple timepoints through clinical care and progression was analyzed for feasibility of liquid biopsy in monitoring treatment response/relapse. ctDNA alterations were evaluated using a targeted 36-gene custom RMS panel at high coverage for single-nucleotide variation and fusion detection, and a shallow whole-genome sequencing for copy number variation. FP-RMS have a stable genome with relapse, with common secondary alterations CDKN2A/B, MYCN, and CDK4 present at diagnosis and impacting survival. FP-RMS lacking major secondary events at baseline acquire recurrent MYCN and AKT1 alterations. FN-RMS acquire a higher number of new alterations, most commonly SMARCA2 missense mutations. ctDNA analyses detect pathognomonic variants in all RMS patients within our collection at diagnosis, regardless of type of alterations, and confirmed at relapse in 86% of FP-RMS and 100% FN-RMS. Moreover, a higher number of fusion reads is detected with increased disease burden and at relapse in patients following a fatal outcome. These results underscore patterns of tumor progression and provide rationale for using liquid biopsy to monitor treatment response

    Germline MBD4 Mutations and Predisposition to Uveal Melanoma

    No full text
    International audienceBackground: Uveal melanoma (UM) arises from malignant transformation of melanocytes in the uveal tract of the eye. This rare tumor has a poor outcome with frequent chemo-resistant liver metastases. BAP1 is the only known predisposing gene for UM. UMs are generally characterized by low tumor mutation burden, but some UMs display a high level of CpG>TpG mutations associated with MBD4 inactivation. Here, we explored the incidence of germline MBD4 variants in a consecutive series of 1093 primary UM case patients and a series of 192 UM tumors with monosomy 3 (M3). Methods: We performed MBD4 targeted sequencing on pooled germline (n Œ 1093) and tumor (n Œ 192) DNA samples of UM patients. MBD4 variants (n Œ 28) were validated by Sanger sequencing. We performed whole-exome sequencing on available tumor samples harboring MBD4 variants (n Œ 9). Variants of unknown pathogenicity were further functionally assessed. Results: We identified 8 deleterious MBD4 mutations in the consecutive UM series, a 9.15-fold (95% confidence interval Œ 4.24-fold to 19.73-fold) increased incidence compared with the general population (Fisher exact test, P Œ 2.00  10-5 , 2-sided), and 4 additional deleterious MBD4 mutations in the M3 cohort, including 3 germline and 1 somatic mutations. Tumors carrying deleterious MBD4 mutations were all associated with high tumor mutation burden and a CpG>TpG hypermutator phenotype. Conclusions: We demonstrate that MBD4 is a new predisposing gene for UM associated with hypermutated M3 tumors. The tumor spectrum of this predisposing condition will likely expand with the addition of MBD4 to diagnostic panels. Tumors arising in such a context should be recognized because they may respond to immunotherapy

    Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma

    No full text
    International audienceEwing sarcoma, a pediatric tumor characterized by EWSR1-ETS fusions, is predominantly observed in populations of European ancestry. We performed a genome-wide association study (GWAS) of 401 French individuals with Ewing sarcoma, 684 unaffected French individuals and 3,668 unaffected individuals of European descent and living in the United States. We identified candidate risk loci at 1p36.22, 10q21 and 15q15. We replicated these loci in two independent sets of cases and controls. Joint analysis identified associations with rs9430161 (P = 1.4 × 10(-20); odds ratio (OR) = 2.2) located 25 kb upstream of TARDBP, rs224278 (P = 4.0 × 10(-17); OR = 1.7) located 5 kb upstream of EGR2 and, to a lesser extent, rs4924410 at 15q15 (P = 6.6 × 10(-9); OR = 1.5). The major risk haplotypes were less prevalent in Africans, suggesting that these loci could contribute to geographical differences in Ewing sarcoma incidence. TARDBP shares structural similarities with EWSR1 and FUS, which encode RNA binding proteins, and EGR2 is a target gene of EWSR1-ETS. Variants at these loci were associated with expression levels of TARDBP, ADO (encoding cysteamine dioxygenase) and EGR2
    corecore