10 research outputs found

    A Methodology to Create 3D Body Models in Motion

    Full text link
    [EN] Size, shape and posture are fundamental features of digital human models (DHM) to obtain accurate virtual simulations of the ergonomics of products and environments. Research on 3D body scanning, processing and modelling have enabled the generation of avatars representing specific populations and morphotypes in standing and seated postures being the basis to define size and shape of DHM. Posture is implemented with biomechanical models of the human movement. Most of the research is focused on posture control and movement tracking to analyze the variability in different contexts (e.g. driving, performing a working task). Motion capture technology used for this purpose, requires a limited number of sensors or reflective markers attached to the body according to the definition of body segments. 3D body scanning and motion capture are both technologies currently used to analyze human body shape and biomechanics to apply it to enhance digital human models. These technologies may converge on the so-called temporal 3D scanners or 4D scanners, a new technology recently developed to scan the body in motion. With this technology, it is possible to obtain sequences of dense 3D point clouds representing the movement of the body. In this paper, a novel methodology to create realistic 3D body models in motion is proposed. This method is supported by a new 4D scanning system (Move 4D) and a data driven-model. Move4D is a modular photogrammetry-based 4D scanning system. It consists of a set of 12 synchronized modules to scan full bodies with texture in motion. It can capture up to 180 fps with a resolution of 2 mm. The algorithms have been conceived and optimized to automatically process the series of raw point clouds captured. They rely on a data-driven body model including shape, pose and soft-tissue deformation trained with a large database and a deep learning model. The process is fully automatic and does not require any interactive landmarking or revision. The 3D outcome of this methodology is one noise-and artefact-free watertight mesh per frame and a model of shape, pose and soft-tissue that can be rigged with a 23-joint skeleton. This type of outcome permits their use for many applications such as simulations, augmented and virtual reality (AR/VR) or biomechanical analysis purposes.The research presented in this paper have been developed within the projects IMDEEA/2020/85 and MDEEA/2020/87. Funding requested to Instituto Valenciano de Competitividad Empresarial (IVACE), call for proposals 2020 for Technology Centers of the Comunitat Valenciana, co-funded by ERDF Funds, EU Operational Program of the Comunitat Valenciana 2014-2020.Parrilla BernabĂ©, E.; Ruescas, A.; Solves, J.; Ballester Fernandez, A.; Nacher Fernandez, B.; Alemany Mut, MS.; Garrido Jaen, JD. (2020). A Methodology to Create 3D Body Models in Motion. Springer. 309-314. https://doi.org/10.1007/978-3-030-51064-0_39S309314Scataglini, S., Paul, G.: DHM and Posturography. Academic Press, London (2019)Zakaria, N., Gupta, D.: Anthropometry, Apparel Sizing and Design. Woodhead Publishing, Cambridge (2019)Liberadzki, P., Adamczyk, M., Witkowski, M., Sitnik, R.: Structured-light-based system for shape measurement of the human body in motion. Sensors 18, 2827 (2018). https://doi.org/10.3390/s18092827Parrilla, E., Ballester, A., Parra, P., Ruescas, A., Uriel, J., Garrido, D., Alemany, S.: MOVE 4D: accurate high-speed 3D body models in motion. In: Proceedings of 3DBODY.TECH 2019, Lugano, Switzerland, 22–23 October 2019, pp. 30–32 (2019). https://doi.org/10.15221/19.03

    Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review

    Full text link
    [EN] Obesity is characterized by the accumulation of an excessive amount of fat mass (FM) in the adipose tissue, subcutaneous, or inside certain organs. The risk does not lie so much in the amount of fat accumulated as in its distribution. Abdominal obesity (central or visceral) is an important risk factor for cardiovascular diseases, diabetes, and cancer, having an important role in the so-called metabolic syndrome. Therefore, it is necessary to prevent, detect, and appropriately treat obesity. The diagnosis is based on anthropometric indices that have been associated with adiposity and its distribution. Indices themselves, or a combination of some of them, conform to a big picture with different values to establish risk. Anthropometric indices can be used for risk identification, intervention, or impact evaluation on nutritional status or health; therefore, they will be called anthropometric health indicators (AHIs). We have found 17 AHIs that can be obtained or estimated from 3D human shapes, being a noninvasive alternative compared to X-ray-based systems, and more accessible than high-cost equipment. A literature review has been conducted to analyze the following information for each indicator: definition; main calculation or obtaining methods used; health aspects associated with the indicator (among others, obesity, metabolic syndrome, or diabetes); criteria to classify the population by means of percentiles or cutoff points, and based on variables such as sex, age, ethnicity, or geographic area, and limitations.BODYPASS Project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 779780. CIBER de Diabetes and Enfermedades Metabolicas Asociadas (CIBERDEM) is an Instituto de Salud Carlos III initiative. SM-H was an investigator in the Juan Rodes program (JR18/00051) financed by the Instituto de Salud Carlos III and the European Regional Development Fund (FEDER). Project (IMDEEA/2020/87) supported by Instituto Valenciano de Competitividad Empresarial (IVACE), call for proposals 2020 for Technology Centers of the Comunitat Valenciana, cofunded by ERDF Funds, EU Operational Program of the Comunitat Valenciana 2014-2020.Piqueras Fiszman, P.; Ballester Fernandez, A.; DurĂĄ-Gil, JV.; Martinez-Hervas, S.; RedĂłn, J.; Real, JT. (2021). Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Frontiers in Psychology. 12:1-19. https://doi.org/10.3389/fpsyg.2021.6311791191

    La tecnologĂ­a que aprende a elegir tu talla de calzado

    Full text link
    Ballester Fernandez, A.; Gil Mora, S.; Valero, J.; Gonzalez Garcia, JC.; Remon Gomez, A. (2019). La tecnologĂ­a que aprende a elegir tu talla de calzado. InnovaciĂłn biomecĂĄnica en Europa. (8):1-3. http://hdl.handle.net/10251/167979S13

    Study on controllable and uncontrollable factors affecting foot shape

    Full text link
    Ballester Fernandez, A.; Pierola, A.; Solves Camallonga, C.; Parrilla Bernabé, E.; Uriel-Molto, J.; Zaimi-Tortajada, IIM.; Page Del Pozo, AF.... (2019). Study on controllable and uncontrollable factors affecting foot shape. Footwear Science. 11(Sup1):123-125. https://doi.org/10.1080/19424280.2019.1606113S12312511Sup1BALLESTER, A., PIEROLA, A., PARRILLA, E., IZQUIERDO, M., URIEL, J., NACHER, B., 
 ALEMANY, S. (2017). Fast, Portable and Low-Cost 3D Foot Digitizers: Validity and Reliability of Measurements. Proceedings of 3DBODY.TECH 2017 - 8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Montreal QC, Canada, 11-12 Oct. 2017. doi:10.15221/17.218Houston, V. L., Luo, G., Mason, C. P., Mussman, M., Garbarini, M., & Beattie, A. C. (2006). Changes in Male Foot Shape and Size with Weightbearing. Journal of the American Podiatric Medical Association, 96(4), 330-343. doi:10.7547/0960330Moholkar, K., & Fenelon, G. (2001). Diurnal variations in volume of the foot and ankle. The Journal of Foot and Ankle Surgery, 40(5), 302-304. doi:10.1016/s1067-2516(01)80066-1XIONG, S., GOONETILLEKE, R. S., ZHAO, J., LI, W., & WITANA, C. P. (2009). Foot deformations under different load-bearing conditions and their relationships to stature and body weight. Anthropological Science, 117(2), 77-88. doi:10.1537/ase.07091

    BASE PROTECTION, apuesta por la tecnologĂ­a del IBV para recomendar el modelo y la talla de calzado que mejor se ajusta a cada usuario

    Full text link
    [ES] Para que un sistema de recomendación de talla de calzado se considere fiable debe fundamentarse en el ajuste o relación entre la forma interior del calzado y la forma del pie. Para ello es clave el escaneado preciso del pie en 3D y la generación de modelos estadísticos para la predicción del ajuste. Para su transferencia a las empresas, la tecnología debe ser fåcilmente integrable en su modelo de negocio y escalable. El Instituto de Biomecånica (IBV) cuenta con la tecnología y las herramientas para escanear el pie del usuario y usar esta información para la selección del modelo y la talla de calzado que mejor se ajusta a cada usuario. También permite asignar la anatomía de la plantilla que mejor se adapta a la forma del pie. El IBV ha colaborado con la empresa BASE PROTECTION licenciando la app 3D Avatar Feet/IBV, que captura la forma del pie con tan solo 3 fotos, y adaptando los algoritmos que permiten asignar la talla del calzado que mejor se ajusta, así como la plantilla mås adecuada a cada usuario en función de su anatomía plantarSolves Camallonga, C.; Gonzalez Garcia, JC.; Gil Mora, S.; Ballester Fernandez, A.; Valero Zorraquino, J.; Nacher Fernandez, B.; Alemany Mut, MS. (2020). BASE PROTECTION, apuesta por la tecnología del IBV para recomendar el modelo y la talla de calzado que mejor se ajusta a cada usuario. Revista de Biomecånica (Online). (67):1-5. http://hdl.handle.net/10251/176144S156

    Resultados preliminares del proyecto InKreate

    Full text link
    [ES] El principal objetivo del Proyecto InKreate (https://www.inkreate.eu/) es facilitar el desarrollo del diseño de moda (de la idea a los detalles técnicos) y el proceso de toma de decisiones mediante la creación de un software adaptado exclusivamente a las necesidades del sector de la moda. La herramienta InKreate incluirå cuatro características principales que la diferenciarån de las soluciones CAD/ CAM actuales (diseño y fabricación asistidos por ordenador): los diseñadores podrån diseñar directamente sobre una forma corporal en 3D, que incluye un escaneo corporal real, una plantilla corporal derivada a partir de datos estadísticos o un modelo de avatar en 3D creado en un software de terceros; el proceso de diseño combinarå la manipulación de las formas y el esbozo intuitivo; la herramienta integrarå un anålisis preliminar del coste del diseño; la interfaz permitirå a los diseñadores gestionar colecciones de diseños y también sus ideas. En este artículo presentamos los resultados preliminares relativos a la tecnología creada para facilitar el desarrollo de diseños sobre formas corporales reales en 3D. El primer resultado es un servicio web, accesible a través de una API, que estå concebido para permitir a los diseñadores generar de forma automåtica unos avatares listos para la simulación a partir de escaneos corporales en formato raw; lo llamaremos el servicio 3D-3D. El segundo resultado es una colección de formas corporales derivadas a partir de datos estadísticos que ofrecerå un conjunto de formas corporales realistas, asequibles y listas para su utilización, a la que llamaremos la colección de avatares. El objetivo de ambas soluciones es ofrecer a los diseñadores de moda la posibilidad de diseñar sobre representaciones corporales realistas en lugar de artísticas. Gracias a una conexión fluida entre la fase creativa y el desarrollo técnico del producto, los diseñadores conseguirån mejorar su eficiencia sin perturbar el flujo creativo.Durà Gil, J.; Caprara, G.; Ballester Fernandez, A.; Pierola, A.; Kozomara, Z. (2019). Resultados preliminares del proyecto InKreate. Revista de Biomecånica (Online). (65). http://hdl.handle.net/10251/121747S6

    3D-body-hub: Herramientas para incorporar la antropometría en el diseño de producto

    Full text link
    Solves Camallonga, C.; Gil Mora, S.; Nacher Fernandez, B.; Uriel-Molto, J.; Ballester Fernandez, A.; Alemany Mut, MS.; Remon Gomez, A.... (2019). 3D-body-hub: Herramientas para incorporar la antropometría en el diseño de producto. Innovación biomecånica en Europa. (8):1-9. http://hdl.handle.net/10251/169346S19

    ÂżEs posible escanear con precisiĂłn el pie en 3D usando un samrtphone?

    Full text link
    [ES] El Instituto de Biomecånica (IBV) ha realizado un estudio que cuantifica la precisión y validez de la tecnología de escaneado del pie en 3D con Smartphone, desarrollada por el IBV, en comparación con metodologías tradicionales, como mediciones manuales, y otras soluciones comerciales actuales referentes en el mercado. Los resultados confirman que la tecnología del IBV es tan precisa como la solución de referencia, y mucho mås fiable que las mediciones manuales realizadas por un experto, ofreciendo grandes oportunidades de aplicación en sectores económicos donde la posibilidad de escanear en cualquier lugar y a bajo coste son importantes para su implantación y escalabilidad.Mañas Ballester, B.; Gil Mora, S.; Ballester Fernandez, A.; Alemany Mut, MS.; Parrilla Bernabé, E.; Pierola, A.; Izquierdo-Riera, MD.... (2018). ¿Es posible escanear con precisión el pie en 3D usando un samrtphone?. Revista de Biomecånica (Online). (65). http://hdl.handle.net/10251/121781S6

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore