2,245 research outputs found
Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest
pre-printFossil fuel combustion has increased atmospheric CO2 by ≈ 115 μmol mol1 since 1750 and decreased its carbon isotope composition (δ13C) by 1.7-2‰(the 13C Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the δ13C of CO2 released by terrestrial ecosystems is expected to differ from the δ13C of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (δR) and photosynthetic assimilation (δA) fluxes gives rise to the 13C land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (δR>δA). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of δA and δR, and the 13C land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the δ13C of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess δA and δR. The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D =0.75 ± 0.21‰or 0.88 ± 0.10‰depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Δcanopy) responding to environmental factors. Possible explanations for negative D include (1) changes in Δcanopy over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil
Connecting Galaxy Evolution, Star Formation and the X-ray Background
As a result of deep hard X-ray observations by Chandra and XMM-Newton a
significant fraction of the cosmic X-ray background (CXRB) has been resolved
into individual sources. These objects are almost all active galactic nuclei
(AGN) and optical followup observations find that they are mostly obscured Type
2 AGN, have Seyfert-like X-ray luminosities (i.e., L_X ~ 10^{43-44} ergs
s^{-1}), and peak in redshift at z~0.7. Since this redshift is similar to the
peak in the cosmic star-formation rate, this paper proposes that the obscuring
material required for AGN unification is regulated by star-formation within the
host galaxy. We test this idea by computing CXRB synthesis models with a ratio
of Type 2/Type 1 AGN that is a function of both z and 2-10 keV X-ray
luminosity, L_X. The evolutionary models are constrained by parameterizing the
observed Type 1 AGN fractions from the recent work by Barger et al. The
parameterization which simultaneously best accounts for Barger's data, the CXRB
spectrum and the X-ray number counts has a local, low-L_X Type 2/Type 1 ratio
of 4, and predicts a Type 2 AGN fraction which evolves as (1+z)^{0.3}. Models
with no redshift evolution yielded much poorer fits to the Barger Type 1 AGN
fractions. This particular evolution predicts a Type 2/Type 1 ratio of 1-2 for
log L_X > 44, and thus the deep X-ray surveys are missing about half the
obscured AGN with these luminosities. These objects are likely to be Compton
thick. Overall, these calculations show that the current data strongly supports
a change to the AGN unification scenario where the obscuration is connected
with star formation in the host galaxy rather than a molecular torus alone. The
evolution of the obscuration implies a close relationship between star
formation and AGN fueling, most likely due to minor mergers or interactions.Comment: 36 pages, 8 figures, ApJ in press. Minor changes to match published
versio
Climate-Mediated Nitrogen and Carbon Dynamics in a Tropical Watershed
Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4–12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions
Regional Differences in South American Monsoon Precipitation Inferred from the Growth and Isotopic Composition of Tropical Trees
The authors present results on the relationship between tree-ring proxies and regional precipitation for several sites in tropical South America. The responsiveness of oxygen isotopes (δ18O) and seasonal growth as precipitation proxies was first validated by high-resolution sampling of a Tachigali myrmecophila from Manaus, Brazil (3.1°S, 60.0°W). Monthly growth of Tachigali spp. was significantly correlated with monthly precipitation. Intra-annual measurements of cellulose δ18O in Tachigali spp. were also significantly correlated with monthly precipitation at a lag of approximately one month. The annual ring widths of two tropical tree taxa, Cedrela odorata growing in the Amazon (12.6°S, 69.2°W) and Polylepis tarapacana growing in the Altiplano (22.0°S, 66.0°W), were validated using bomb-derived radiocarbon 14C. Estimated dates were within two to three years of bomb-inferred 14C dates, indicating that these species exhibit annual rings but uncertainties in our chronologies remain. A multiproxy record spanning 180 years from Cedrela spp. showed a significant negative relationship between cellulose δ18O and January precipitation. A 150-yr record obtained from Polylepis spp. also showed a significant negative relationship between δ18O and March precipitation, whereas annual ring width showed a significant positive correlation with December precipitation. These proxies were combined in a multivariate framework to reconstruct past precipitation, revealing a significant increase in monsoon precipitation at the Amazon site since 1890 and a significant decrease in monsoon precipitation at the Altiplano since 1880. Proxy time series also showed spatial and temporal coherence with precipitation variability due to El Niño forcing, suggesting that oxygen isotopes and ring widths in tropical trees may be important diagnostics for identifying regional differences in the response of the tropical hydrologic cycle to anthropogenic warming
A growth-rate indicator for Compton-thick active galactic nuclei
Due to their heavily obscured central engines, the growth rate of
Compton-thick (CT) active galactic nuclei (AGN) is difficult to measure. A
statistically significant correlation between the Eddington ratio,
{\lambda}, and the X-ray power-law index, {\Gamma}, observed in
unobscured AGN offers an estimate of their growth rate from X-ray spectroscopy
(albeit with large scatter). However, since X-rays undergo reprocessing by
Compton scattering and photoelectric absorption when the line-of-sight to the
central engine is heavily obscured, the recovery of the intrinsic {\Gamma} is
challenging. Here we study a sample of local, predominantly Compton-thick
megamaser AGN, where the black hole mass, and thus Eddington luminosity, are
well known. We compile results on X-ray spectral fitting of these sources with
sensitive high-energy (E> 10 keV) NuSTAR data, where X-ray torus models which
take into account the reprocessing effects have been used to recover the
intrinsic {\Gamma} values and X-ray luminosities, L. With a simple
bolometric correction to L to calculate {\lambda}, we find a
statistically significant correlation between {\Gamma} and {\lambda} (p
= 0.007). A linear fit to the data yields {\Gamma} =
(0.410.18)log{\lambda}+(2.38 0.20), which is
statistically consistent with results for unobscured AGN. This result implies
that torus modeling successfully recovers the intrinsic AGN parameters. Since
the megamasers have low-mass black holes (M M)
and are highly inclined, our results extend the {\Gamma}-{\lambda}
relationship to lower masses and argue against strong orientation effects in
the corona, in support of AGN unification. Finally this result supports the use
of {\Gamma} as a growth-rate indicator for accreting black holes, even for
Compton-thick AGN.Comment: Accepted for publication in Ap
Broadband X-ray spectral analysis of the Seyfert 1 galaxy GRS 1734-292
We discuss the broadband X-ray spectrum of GRS 1734-292 obtained from
non-simultaneous XMM-Newton and NuSTAR observations, performed in 2009 and
2014, respectively. GRS1734-292 is a Seyfert 1 galaxy, located near the
Galactic plane at . The NuSTAR spectrum ( keV) is dominated by
a primary power-law continuum with and a high-energy
cutoff keV, one of the lowest measured by NuSTAR in a
Seyfert galaxy. Comptonization models show a temperature of the coronal plasma
of keV and an optical depth, assuming a slab
geometry, or a similar temperature and
assuming a spherical geometry. The 2009 XMM-Newton
spectrum is well described by a flatter intrinsic continuum
() and one absorption line due to Fe\textsc{XXV}
K produced by a warm absorber. Both data sets show a modest iron
K emission line at keV and the associated Compton reflection, due
to reprocessing from neutral circumnuclear material
Emission-line Helium Abundances in Highly Obscured Nebulae
This paper outlines a way to determine the ICF using only infrared data. We
identify four line pairs, [NeIII] 36\micron/[NeII] 12.8\micron,
[NeIII]~15.6\micron /[NeII] 12.8\micron, [ArIII] 9\micron/[ArII]
6.9\micron, and [ArIII] 21\micron/[ArII] 6.9\micron, that are sensitive
to the He ICF. This happens because the ions cover a wide range of ionization,
the line pairs are not sensitive to electron temperature, they have similar
critical densities, and are formed within the He/H region of the
nebula. We compute a very wide range of photoionization models appropriate for
galactic HII regions. The models cover a wide range of densities, ionization
parameters, stellar temperatures, and use continua from four very different
stellar atmospheres.
The results show that each line pair has a critical intensity ratio above
which the He ICF is always small. Below these values the ICF depends very
strongly on details of the models for three of the ratios, and so other
information would be needed to determine the helium abundance. The [Ar III]
9\micron/[ArII] 6.9\micron ratio can indicate the ICF directly due to the
near exact match in the critical densities of the two lines. Finally, continua
predicted by the latest generation of stellar atmospheres are sufficiently hard
that they routinely produce significantly negative ICFs.Comment: Accepted by PASP. Scheduled for the October 1999 issue. 11 pages, 5
figure
X-ray bolometric corrections for Compton-thick active galactic nuclei
We present X-ray bolometric correction factors, (), for Compton-thick (CT) active galactic nuclei (AGN) with the aim
of testing AGN torus models, probing orientation effects, and estimating the
bolometric output of the most obscured AGN. We adopt bolometric luminosities,
, from literature infrared (IR) torus modeling and compile published
intrinsic 2--10 keV X-ray luminosities, , from X-ray torus modeling of
NuSTAR data. Our sample consists of 10 local CT AGN where both of these
estimates are available. We test for systematic differences in
values produced when using two widely used IR torus models and two widely used
X-ray torus models, finding consistency within the uncertainties. We find that
the mean of our sample in the range
erg/s is log
with an intrinsic scatter of dex, and that our derived
values are consistent with previously established relationships between
and and and Eddington ratio. We
investigate if is dependent on by comparing our results on
CT AGN to published results on less-obscured AGN, finding no significant
dependence. Since many of our sample are megamaser AGN, known to be viewed
edge-on, and furthermore under the assumptions of AGN unification whereby
unobscured AGN are viewed face-on, our result implies that the X-ray emitting
corona is not strongly anisotropic. Finally, we present values
for CT AGN identified in X-ray surveys as a function of their observed ,
where an estimate of their intrinsic is not available, and redshift,
useful for estimating the bolometric output of the most obscured AGN across
cosmic time.Comment: Accepted for publication in Ap
- …