1,062 research outputs found

    The Meat Standards Australia Index indicates beef carcass quality

    Get PDF
    A simple index that reflects the potential eating quality of beef carcasses is very important for producer feedback. The Meat Standards Australia (MSA) Index reflects variation in carcass quality due to factors that are influenced by producers (hot carcass weight, rib fat depth, hump height, marbling and ossification scores along with milk fed veal category, direct or saleyard consignment, hormonal growth promotant status and sex). In addition, processor impacts on meat quality are standardised so that the MSA Index could be compared across time, breed and geographical regions. Hence, the MSA Index was calculated using achilles hung carcasses, aged for 5 days postmortem. Muscle pH can be impacted by production, transport, lairage or processing factors, hence the MSA Index assumes a constant pH of 5.6 and loin temperature of 7 o C for all carcasses. To quantify the cut weight distribution of the 39 MSA cuts in the carcass, 40 Angus steers were sourced from the low (n=13), high (n=15) and myostatin (n=12) muscling selection lines. The left side of each carcass was processed down to the 39 trimmed MSA cuts. There was no difference in MSA cut distribution between the low and high muscling lines (P>0.05), although there were differences with nine cuts from the myostatin line (P<0.05). There was no difference in the MSA Index calculated using actual muscle percentages and using the average from the low and high muscling lines (R 2 =0.99). Different cooking methods impacted via a constant offset between eating quality and carcass input traits (R 2 =1). The MSA Index calculated for the four most commercially important cuts was highly related to the index calculated using all 39 MSA cuts (R 2 =0.98), whilst the accuracy was lower for an index calculated using the striploin (R 2 =0.82). Therefore, the MSA Index was calculated as the sum of the 39 eating quality scores predicted at 5 days ageing, based on their most common cooking method, weighted by the proportions of the individual cut relative to total weight of all cuts. The MSA Index provides producers with a tool to assess the impact of management and genetic changes on the predicted eating quality of the carcass. The MSA Index could also be utilised for benchmarking and to track eating quality trends at farm, supply chain, regional, state or national levels

    DIFFERENT WEIGHT TRANSFER PATTERNS IN GOLF

    Get PDF
    The aim of this study was to determine if weight transfer swing styles exist in the golf swing. 40 golfers performed swings using a driver while standing on two force plates. Centre of pressure, used to indicate weight transfer, was normalized to foot position and quantified at eight swing events. Cluster analysis indicated that two major swing styles existed; a Front Foot style and a Reverse style. Both styles were similar from Takeaway to Early Downswing. Then, while the Front Foot group moved weight towards the front foot during the downswing, the Reverse group moved weight back towards the back foot. In the heel to toe direction, the Front Foot group hit from a mid-foot position, while the Reverse group hit with weight near the toes at ball contact. Cluster analysis is a useful tool for identifying different styles

    Remarks on the KLS conjecture and Hardy-type inequalities

    Full text link
    We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary functions on a convex body ΩRn\Omega \subset \mathbb{R}^n, not necessarily vanishing on the boundary Ω\partial \Omega. This reduces the study of the Neumann Poincar\'e constant on Ω\Omega to that of the cone and Lebesgue measures on Ω\partial \Omega; these may be bounded via the curvature of Ω\partial \Omega. A second reduction is obtained to the class of harmonic functions on Ω\Omega. We also study the relation between the Poincar\'e constant of a log-concave measure μ\mu and its associated K. Ball body KμK_\mu. In particular, we obtain a simple proof of a conjecture of Kannan--Lov\'asz--Simonovits for unit-balls of pn\ell^n_p, originally due to Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in final form in GAFA seminar note

    Stability for Borell-Brascamp-Lieb inequalities

    Get PDF
    We study stability issues for the so-called Borell-Brascamp-Lieb inequalities, proving that when near equality is realized, the involved functions must be L1L^1-close to be pp-concave and to coincide up to homotheties of their graphs.Comment: to appear in GAFA Seminar Note

    Higher Twist Distribution Amplitudes of the Nucleon in QCD

    Get PDF
    We present the first systematic study of higher-twist light-cone distribution amplitudes of the nucleon in QCD. We find that the valence three-quark state is described at small transverse separations by eight independent distribution amplitudes. One of them is leading twist-3, three distributions are twist-4 and twist-5, respectively, and one is twist-6. A complete set of distribution amplitudes is constructed, which satisfies equations of motion and constraints that follow from conformal expansion. Nonperturbative input parameters are estimated from QCD sum rules.Comment: 29 pages, 4 figures, eqn in (3.19) corrected, table 3 accordingly changed, some typos fixe

    Constraining the Unitarity Triangle with B -> V gamma

    Full text link
    We discuss the exclusive radiative decays BKγB\to K^{*}\gamma, BργB \to\rho\gamma, and BωγB\to\omega\gamma in QCD factorization within the Standard Model. The analysis is based on the heavy-quark limit of QCD. Our results for these decays are complete to next-to-leading order in QCD and to leading order in the heavy-quark limit. Special emphasis is placed on constraining the CKM-unitarity triangle from these observables. We propose a theoretically clean method to determine CKM parameters from the ratio of the BρlνB\to\rho l\nu decay spectrum to the branching fraction of BργB\to\rho\gamma. The method is based on the cancellation of soft hadronic form factors in the large energy limit, which occurs in a suitable region of phase space. The ratio of the BργB\to\rho\gamma and BKγB\to K^{*}\gamma branching fractions determines the side RtR_{t} of the standard unitarity triangle with reduced hadronic uncertainties. The recent Babar bound on B(B0ρ0γ)B(B^0\to\rho^0\gamma) implies Rt<0.81(ξ/1.3)R_t < 0.81 (\xi/1.3), with the limiting uncertainty coming only from the SU(3) breaking form factor ratio ξ\xi. This constraint is already getting competitive with the constraint from BsB_{s}-Bˉs\bar B_{s} mixing. Phenomenological implications from isospin-breaking effects are briefly discussed.Comment: 23 pages, 8 figure

    Radiative corrections to hard spectator scattering in BππB\to \pi\pi decays

    Full text link
    We present the calculation of the next-to-leading corrections to the tree amplitudes which appear in the description of non-leptonic B-decays in the factorization approach. These corrections, together with radiative corrections to the jet functions, represent the full next-to-leading contributions to the dominant hard spectator scattering term generated by operators O1,2O_{1,2} in the decay amplitudes. Using obtained analytical results we estimate BππB\to\pi\pi branchings fractions in the physical (or BBNS) factorization scheme. We have also found that the imaginary part generated in the hard spectator scattering term is rather large compared to the imaginary part of the vertex contribution.Comment: text is improved and typos are corrected, accepted for publication in JHE

    Estimates for measures of sections of convex bodies

    Full text link
    A n\sqrt{n} estimate in the hyperplane problem with arbitrary measures has recently been proved in \cite{K3}. In this note we present analogs of this result for sections of lower dimensions and in the complex case. We deduce these inequalities from stability in comparison problems for different generalizations of intersection bodies

    Thermal Recombination: Beyond the Valence Quark Approximation

    Full text link
    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.Comment: 5 pages, 5 figure
    corecore