18,487 research outputs found
Lattice deformations at martensite-martensite interfaces in Ni-Al
The atomic configurations at macrotwin interfaces between microtwinned martensite plates in material are investigated using high resolution transmission electron microscopy (HRTEM). The observed structures are interpreted in view of possible formation mechanisms of these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular \{110\} austenite planes, enclose a final angle larger or smaller than , measured over the boundary. Two different configurations, one with crossing microtwins and the other with ending microtwins producing a step configuration are described. The latter is related with the existence of microtwin sequences with changing variant widths. Although both features appear irrespective of the material’s preparation technique, rapid solidification seems to prefer the step configuration. Depending on the actual case, tapering, bending and tip splitting of the small microtwin variants is observed. Sever lattice deformations and reorientations occur in a region of 5 – 10 nm around the interface while sequences of single plane ledges gradually bending the microtwins are found up to 50 nm away form the interface. These structures and deformations are interpreted in view of the need to accommodate any remaining stresses
Poisson transition rates from time-domain measurements with finite bandwidth
In time-domain measurements of a Poisson two-level system, the observed
transition rates are always smaller than those of the actual system, a general
consequence of finite measurement bandwidth in an experiment. This
underestimation of the rates is significant even when the measurement and
detection apparatus is ten times faster than the process under study. We derive
here a quantitative form for this correction using a straightforward
state-transition model that includes the detection apparatus, and provide a
method for determining a system's actual transition rates from
bandwidth-limited measurements. We support our results with computer
simulations and experimental data from time-domain measurements of
quasiparticle tunneling in a single-Cooper-pair transistor.Comment: 4 pages, 5 figure
An investigation of non-planar austenite–martensite interfaces
Motivated by experimental observations on CuAlNi single crystals, we present a theoretical investigation of non-planar austenite–martensite interfaces. Our analysis is based on the nonlinear elasticity model for martensitic transformations and we show that, under suitable assumptions on the lattice parameters, non-planar interfaces are possible, in particular for transitions with cubic austenite
Heavy to Light Meson Exclusive Semileptonic Decays in Effective Field Theory of Heavy Quark
We present a general study on exclusive semileptonic decays of heavy (B, D,
B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field
theory of heavy quark. Transition matrix elements of these decays can be
systematically characterized by a set of wave functions which are independent
of the heavy quark mass except for the implicit scale dependence. Form factors
for all these decays are calculated consistently within the effective theory
framework using the light cone sum rule method at the leading order of 1/m_Q
expansion. The branching ratios of these decays are evaluated, and the heavy
and light flavor symmetry breaking effects are investigated. We also give
comparison of our results and the predictions from other approaches, among
which are the relations proposed recently in the framework of large energy
effective theory.Comment: 18 pages, ReVtex, 5 figures, added references and comparison of
results, and corrected signs in some formula
Vector-pseudoscalar two-meson distribution amplitudes in three-body meson decays
We study three-body nonleptonic decays by introducing two-meson
distribution amplitudes for the vector-pseudoscalar pair, such that the
analysis is simplified into the one for two-body decays. The twist-2 and
twist-3 two-meson distribution amplitudes, associated with
longitudinally and transversely polarized mesons, are constrained by the
experimental data of the and branching
ratios. We then predict the and decay
spectra in the invariant mass. Since the resonant contribution in the
channel is negligible, the above decay spectra provide a clean test
for the application of two-meson distribution amplitudes to three-body
meson decays.Comment: 9 pages, 1 figure, Revtex4, version to appear in PR
Updated analysis of NN elastic scattering to 3 GeV
A partial-wave analysis of NN elastic scattering data has been updated to
include a number of recent measurements. Experiments carried out at the Cooler
Synchrotron (COSY) by the EDDA Collaboration have had a significant impact
above 1 GeV. Results are discussed in terms of the partial-wave and
direct-reconstruction amplitudes.Comment: 16 pages, 14 figures, 2 tables; Fig 10 error corrected; Accepted for
publication in Physical Review
Singularity theory study of overdetermination in models for L-H transitions
Two dynamical models that have been proposed to describe transitions between
low and high confinement states (L-H transitions) in confined plasmas are
analysed using singularity theory and stability theory. It is shown that the
stationary-state bifurcation sets have qualitative properties identical to
standard normal forms for the pitchfork and transcritical bifurcations. The
analysis yields the codimension of the highest-order singularities, from which
we find that the unperturbed systems are overdetermined bifurcation problems
and derive appropriate universal unfoldings. Questions of mutual equivalence
and the character of the state transitions are addressed.Comment: Latex (Revtex) source + 13 small postscript figures. Revised versio
- …