1,855 research outputs found

    PCR-DGGE fingerprints of microbial successional changes during fermentation of cereal-legume weaning foods

    Get PDF
    Phenotypic identification and monitoring of the dynamics of naturally occurring microbial community responsible for the spontaneous fermentation of different cereal-legume weaning blends was carriedout. Enumeration using culture-dependent method showed that cell counts increased within the first 24 h with the highest total viable count of 1.2 x 1012 cfu g-1 in maize-legume (1A) blend. Yeast countsincreased drastically and no enterobacteria were observed within the first 24 h. At all fermentation times, acidity increased within 48 h and lowest pH value (3.60) was reached in maize–based blend. Phenotypic identification revealed that the isolated bacteria belong to the genera Bacillus species, Staphylococcus aureus, and Escherichia coli. The yeast isolates were identified as Saccharomyces cerevisiae, Saccharomyces species and Hansenula species while Lactobacillus plantarum and Pediococcus acidilactici were the predominant lactic acid bacteria (LAB). The analysis of the denaturing gradient gel electrophoresis (DGGE) pattern obtained with bacterial and LAB primers targeting the V3 region of the 16S rDNA genes clearly demonstrated that there was a major shift in the communitystructure within the first 24 h

    Medial collateral ligament reconstruction for anteromedial instability of the knee: a biomechanical study in vitro.

    Get PDF
    BACKGROUND: Although a medial collateral ligament (MCL) injury is associated with anteromedial rotatory instability (AMRI) and often with an anterior cruciate ligament (ACL) injury, there has been little work to develop anteromedial (AM) reconstruction to address this laxity. PURPOSE: To measure the ability of a novel "anatomic" AM reconstruction technique to restore native knee laxity for isolated AM insufficiency and combined AM plus posteromedial insufficiency. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 12 cadaveric knees were mounted in a kinematic testing rig that allowed the tibia to be loaded while the knee flexed-extended 0° to 100° with 88-N anteroposterior translation, 5-N·m internal rotation-external rotation (ER), 8-N·m valgus, and combined anterior translation plus ER to simulate AMRI. Joint motion was measured using optical trackers with the knee intact, after superficial MCL (sMCL) and deep MCL (dMCL) transection, and after AM reconstruction of the sMCL and dMCL with semitendinosus autografts. The posteromedial capsule (PMC)/posterior oblique ligament (POL) was then transected to induce a grade 3 medial injury, and kinematic measurements were repeated afterward and again after removing the grafts. Laxity changes were examined using repeated-measures analysis of variance and post-testing. RESULTS: sMCL and dMCL deficiency increased valgus, ER, and AMRI laxities. These laxities did not differ from native values after AM reconstruction. Additional PMC/POL deficiency did not increase these laxities significantly but did increase internal rotation laxity near knee extension; this was not controlled by AM reconstruction. CONCLUSION: AM reconstruction eliminated AMRI after transection of the dMCL and sMCL, and also eliminated AMRI after additional PMC/POL transection. CLINICAL RELEVANCE: Many MCL injuries occur in combination with ACL injuries, causing AMRI. These injuries may rupture the AM capsule and dMCL. Unaddressed MCL deficiency leads to an increased ACL reconstruction failure rate. A dMCL construct oriented anterodistally across the medial joint line, along with an sMCL graft, can restore native knee ER laxity. PMC/POL lesions did not contribute to AMRI

    A triple-strand anatomic medial collateral ligament reconstruction restores knee stability more completely than a double-strand reconstruction: a biomechanical study in vitro.

    Get PDF
    BACKGROUND: There are many descriptions of medial collateral ligament (MCL) reconstruction, but they may not reproduce the anatomic structures and there is little evidence of their biomechanical performance. PURPOSE: To investigate the ability of "anatomic" MCL reconstruction to restore native stability after grade III MCL plus posteromedial capsule/posterior oblique ligament injuries in vitro. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve cadaveric knees were mounted in a kinematic testing rig to impose tibial displacing loads while the knee was flexed-extended: 88-N anteroposterior translation, 5-N·m internal-external rotation, 8-N·m valgus-varus, and combined anterior translation plus external rotation (anteromedial rotatory instability). Joint motion was measured via optical trackers with the knee intact; after superficial MCL (sMCL), deep MCL (dMCL), and posterior oblique ligament transection; and then after MCL double- and triple-strand reconstructions. Double strands reproduced the sMCL and posterior oblique ligament and triple-strands the sMCL, dMCL, and posterior oblique ligament. The sMCL was placed 5 mm posterior to the epicondyle in the double-strand technique and at the epicondyle in the triple-strand technique. Kinematic changes were examined by repeated measures 2-way analysis of variance with posttesting. RESULTS: Transection of the sMCL, dMCL, and posterior oblique ligament increased valgus rotation (5° mean) and external rotation (9° mean). The double-strand reconstruction controlled valgus in extension but allowed 5° excess valgus in flexion and did not restore external rotation (7° excess). The triple-strand reconstruction restored both external rotation and valgus throughout flexion. CONCLUSION: In a cadaveric model, a triple-strand reconstruction including a dMCL graft restored native external rotation, while a double-strand reconstruction without a dMCL graft did not. A reconstruction with the sMCL graft placed isometrically on the medial epicondyle restored valgus rotation across the arc of knee flexion, whereas a reconstruction with a more posteriorly placed sMCL graft slackened with knee flexion. CLINICAL RELEVANCE: An MCL injury may rupture the anteromedial capsule and dMCL, causing anteromedial rotatory instability. Persistent MCL instability increases the likelihood of ACL graft failure after combined injury. A reconstruction with an anteromedial dMCL graft restored native external rotation, which may help to unload/protect an ACL graft. It is important to locate the sMCL graft isometrically at the femoral epicondyle to restore valgus across flexion

    Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters

    Get PDF
    A sampling protocol for the retention, extraction, and analysis of sulfoxyanions in hydrothermal waters has been developed in the laboratory and tested at Yellowstone National Park and Green Lake, NY. Initial laboratory testing of the anion-exchange resin Bio-Rad™ AG1-X8 indicated that the resin was well suited for the sampling, preservation, and extraction of sulfate and thiosulfate. Synthetic solutions containing sulfate and thiosulfate were passed through AG1-X8 resin columns and eluted with 1 and 3 M KCl, respectively. Recovery ranged from 89 to 100%. Comparison of results for water samples collected from five pools in Yellowstone National Park between on-site 1C analysis (U.S. Geological Survey mobile lab) and IC analysis of resin-stored sample at SUNY-Stony Brook indicates 96 to 100% agreement for three pools (Cinder, Cistern, and an unnamed pool near Cistern) and 76 and 63% agreement for two pools (Sulfur Dust and Frying Pan). Attempts to extract polythionates from the AG1-X8 resin were made using HCl solutions, but were unsuccessful. Bio-Rad™ AG2-X8, an anion-exchange resin with weaker binding sites than the AG1-X8 resin, is better suited for polythionate extraction. Sulfate and thiosulfate extraction with this resin has been accomplished with KCl solutions of 0.1 and 0.5 M, respectively. Trithionate and tetrathionate can be extracted with 4 M KCl. Higher polythionates can be extracted with 9 M hydrochloric acid. Polythionate concentrations can then be determined directly using ion chromatographic methods, and laboratory results indicate recovery of up to 90% for synthetic polythionate solutions using AG2-X8 resin columns

    Hyperglycaemia and diabetes impair gap junctional communication among astrocytes

    Get PDF
    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20–24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables

    Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH

    Get PDF
    AIMS: In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely-balanced sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge and return pHi to normal. METHODS AND RESULTS: Following left-ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl–/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinisation when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate to improve systemic buffering had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes (NRVMs) incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) upregulation and Slc4a2 (AE2) downregulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had low chloride concentration, a manoeuvre that reduces the extent of pHi decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterised as pH-sensors, ablated pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS: Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities. TRANSLATIONAL PERSPECTIVE: As a consequence of the inherent thermodynamic coupling between intra- and extracellular pH (pHi/pHe), sustained changes to perfusion, such as those in coronary disease or development, would have deleterious effects on the internal acid-base milieu of myocytes and hence cardiac function, unless offset by a corrective process. Using in-vivo and in-vitro models of acidification, we characterise this adaptive process functionally, and describe how it is engaged to auto-regulate pHi. This additional layer of homeostatic oversight enables the myocardium to operate within its optimal pHi-range, even at times when vascular perfusion is failing to maintain chemical constancy of the interstitial fluid

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure

    The N2pc Is Increased by Perceptual Learning but Is Unnecessary for the Transfer of Learning

    Get PDF
    Background: Practice improves human performance in many psychophysical paradigms. This kind of improvement is thought to be the evidence of human brain plasticity. However, the changes that occur in the brain are not fully understood. Methodology/Principal Findings: The N2pc component has previously been associated with visuo-spatial attention. In this study, we used event-related potentials (ERPs) to investigate whether the N2pc component changed during long-term visual perceptual learning. Thirteen subjects completed several days of training in an orientation discrimination task, and were given a final test 30 days later. The results showed that behavioral thresholds significantly decreased across training sessions, and this decrement was also present in the untrained visual field. ERPs showed training significantly increased the N2pc amplitude, and this effect could be maintained for up to 30 days. However, the increase in N2pc was specific to the trained visual field. Conclusion/Significance: Training caused spatial attention to be increasingly focused on the target positions. However, this process was not transferrable from the trained to the untrained visual field, which suggests that the increase in N2pc ma

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
    corecore