5,348 research outputs found

    From the Temporal to the Eternal: The Normative Philosophy of Anselm of Canterbury

    Get PDF
    The purpose of this thesis is to examine the extent to which Anselm of Canterbury can be described to have possessed a consistent normative philosophy which coherently addressed the question of how the individual ought to act. By so doing it will seek to extend the contemporary commentary of Anselmā€™s ethical philosophy beyond the abstract and meta-ethical and analyse the ways in which Anselmā€™s letter collection can be used to show pragmatic approaches to ethical questions. In examining this field, this thesis contains what amounts to two interdependent parts. The first will deal almost exclusively with Anselmā€™s anthropology, theory of will, and ethical philosophy. The second will, broadly speaking, examine the impact of his theology and ethical philosophy upon his societal and political beliefs. This will by no means amount to an exhaustive study of Anselmā€™s normative thought; rather, it will provide key examples of how such an approach opens up new lines of research and furthers the field of Anselm studies, addressing several past issues of contention

    Development of new methods in solid-state NMR

    Get PDF
    Many chemically important nuclei are quadrupolar with half-integer spin (i.e., spin I = 1.5, 2.5, etc.) The presence of quadrupolar broadening for such nuclei can limit the information that may be extracted using NMR. MAS is able to remove first-order quadrupolar broadening but can only reduce the second-order contribution to the linewidth. The MQMAS and STMAS techniques have enabled high-resolution NMR spectra of half-integer quadrupolar nuclei in the solid state to be obtained by two-dimensional correlation under MAS conditions. Both of these experiments have several well-known limitations. One is that the conversion pulses in particular are very inefficient and the other is that the longer acquisition times required for two-dimensional experiments can be a limiting factor. Both of these disadvantages are addressed in this thesis. For the former case, existing composite pulse schemes designed to improve the efficiency of the conversion of multiple-quantum coherences are compared using 27Al and 87Rb MQMAS NMR of a series of crystalline and amorphous materials. In the latter case, a new experiment, named STARTMAS, is introduced that enables isotropic spectra of spin I = 1.5 spectra to be acquired in real time. The theoretical basis of the technique is explained and its applicability demonstrated using 23Na and 87Rb NMR of a wide range of solids. The nuclear Overhauser effect (NOE) is one of the most widely exploited phenomena in NMR and is now widely used for molecular structure determination in solution. NOEs in the solid state are rare and those to quadrupolar nuclei rarer still, this being due to the general absence of motion on the correct timescale and the usual efficiency of quadrupolar T1 relaxation, respectively. In this thesis, 11B{1H} transient NOE results are presented for a range of solid borane adducts. A comparison is made of the 11B NMR enhancements observed under MAS and static conditions and a rationale is proposed for the behaviour in the latter case

    Retrospective Evaluation of High School Primary Physical Activities and Adulthood Physical Activity Need Satisfaction

    Get PDF
    Presumably, individuals are taught skills throughout their primary education that are required to live a healthy lifestyle throughout the lifespan. The primary purpose of this study was to assess adult psycho- logical need satisfaction in relation to high school participation. Participation included university employees and students of two mid-sized universities and members of a state health organization. Participants (n = 512) completed the Psychological Need Satisfaction in Exercise (PNSE) and the International Physical Activity Questionnaire (IPAQ). The current study found modest associations between measured motivation constructs on physical activity levels. Standardized coefficients report competence and autonomy had a significant effect on physical activity in predicting adult physical activity levels. Results of this study provide insight into the determinants underlying the development of physical activity tendencies in adults and suggest high school physical education and sport participation have an equal influence on adult physical activity levels

    Revealing per-grain and neighbourhood stress interactions of a deforming ferritic steel via three-dimensional X-ray diffraction

    Get PDF
    The structural performance of polycrystalline alloys is strongly controlled by the characteristics of individual grains and their interactions, motivating this study to understand the dynamic micromechanical response within the microstructure. Here, a high ductility single-phase ferritic steel during uniaxial deformation is explored using three-dimensional X-ray diffraction. Grains well aligned for dislocation slip are shown to possess a wide intergranular stress range, controlled by per-grain dependent hardening activity. Contrariwise, grains orientated poorly for slip have a narrow stress range. A grain neighbourhood effect is observed of statistical significance: the Schmid factor of serial adjoining grains influences the stress state of a grain of interest, whereas parallel neighbours are less influential. This phenomenon is strongest at low plastic strains, with the effect diminishing as grains rotate during plasticity to eliminate any orientation dependent load shedding. The ability of the ferrite to eliminate such neighbourhood interactions is considered key to the high ductility possessed by these materials

    Revealing per-grain and neighbourhood stress interactions of a deforming ferritic steel via three-dimensional X-ray diffraction

    Get PDF
    The structural performance of polycrystalline alloys is strongly controlled by the characteristics of individual grains and their interactions, motivating this study to understand the dynamic micromechanical response within the microstructure. Here, a high ductility single-phase ferritic steel during uniaxial deformation is explored using three-dimensional X-ray diffraction. Grains well aligned for dislocation slip are shown to possess a wide intergranular stress range, controlled by per-grain dependent hardening activity. Contrariwise, grains orientated poorly for slip have a narrow stress range. A grain neighbourhood effect is observed of statistical significance: the Schmid factor of serial adjoining grains influences the stress state of a grain of interest, whereas parallel neighbours are less influential. This phenomenon is strongest at low plastic strains, with the effect diminishing as grains rotate during plasticity to eliminate any orientation dependent load shedding. The ability of the ferrite to eliminate such neighbourhood interactions is considered key to the high ductility possessed by these materials

    A disciplinary commons for database teaching

    Get PDF
    This paper discusses the experience of taking part in a disciplinary commons devoted to the teaching of database systems. It will discuss the structure of a disciplinary commons and our experience of the database version

    MakeCode and CODAL:Intuitive and Efficient Embedded Systems Programming for Education

    Get PDF
    Across the globe, it is now commonplace for educators to engage in the making (design and development) of embedded systems in the classroom to motivate and excite their students. This new domain brings its own set of unique requirements. Historically, embedded systems development requires knowledge of low-level programming languages, local installation of compilation toolchains, device drivers, and applications. For students and educators, these requirements can introduce insurmountable barriers. We present the motivation, requirements, implementation, and evaluation of a new programming platform that enables novice users to create software for embedded systems. The platform has two major components: 1) Microsoft MakeCode (www.makecode.com), a web app that encapsulates an entire beginner IDE for microcontrollers; and 2) CODAL, an efficient component-oriented C++ runtime for microcontrollers. We show how MakeCode and CODAL provide an accessible, cross-platform, installation-free programming experience for the BBC micro:bit and other embedded devices

    MakerArcade:Using Gaming and Physical Computing for Playful Making, Learning, and Creativity

    Get PDF
    The growing maker movement has created a number of hardware and construction toolkits that lower the barriers of entry into programming for youth and others, using a variety of approaches, such as gaming or robotics. For constructionist-like kits that use gaming, many are focused on designing and programming games that are single player, and few explore using physical and craft-like approaches that move beyond the screen and single player experiences. Moving beyond the screen to incorporate physical sensors into the creation of gaming experiences provides new opportunities for learning about concepts in a variety of areas in computer science and making. In this early work, we elucidate our design goals and prototype for a mini-arcade system that builds upon principles in constructionist gaming - making games to learn programming - as well as physical computin

    Metamorphosis of plasma turbulence-shear flow dynamics through a transcritical bifurcation

    Full text link
    The structural properties of an economical model for a confined plasma turbulence governor are investigated through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifurcation framework of the model and typical behavior associated with low- to high-confinement transitions such as shear flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by viscous dissipation. The other is intrinsically oscillatory and non-hysteretic, and thus provides a model for the so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the system dynamics is an important late side-effect of symmetry-breaking, which manifests as an unusual non-symmetric transcritical bifurcation induced by a significant shear flow drive.Comment: 17 pages, revtex text, 9 figures comprised of 16 postscript files. Submitted to Phys. Rev.

    New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones

    Get PDF
    Stateā€ofā€theā€art perovskiteā€based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiroā€OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOTā€Amideā€TPA) is reported in which a functional amideā€based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of <$5 gāˆ’1. When employed in perovskite solar cells, EDOTā€Amideā€TPA demonstrates stabilized power conversion efficiencies up to 20.0% and reproducibly outperforms Spiroā€OMeTAD in direct comparisons. Time resolved microwave conductivity measurements indicate that the observed improvement originates from a faster hole injection rate from the perovskite to EDOTā€Amideā€TPA. Additionally, the devices exhibit an improved lifetime, which is assigned to the coordination of the amide bond to the Liā€additive, offering a novel strategy to hamper the migration of additives. It is shown that, despite the lack of a conjugated backbone, the amideā€based HTM can outperform stateā€ofā€theā€art HTMs at a fraction of the cost, thereby providing a novel set of design strategies to develop new, lowā€cost HTMs
    • ā€¦
    corecore