1,413 research outputs found

    The Upper Devonian Sandstone aquifer of Fife

    Get PDF
    The Devonian sandstone aquifer of Fife has long been recognised as one of the most important hydrogeological units in Scotland. Its importance was first acknowledged by Earp and Eden (1961), and the aquifer was later described by Foster et al (1976). Data were subsequently gathered together in map form (BGS, 1986) but little analysis of the aquifer was carried out other than a dissertation prepared by Barker (1981), occasional reports on specific issues such as nitrate pollution (e.g. Frost and Sargent, 1993; MacDonald, 1993; Ball, 1994), and the preparation of the 1: 100 000 scale Aquifer Vulnerability Map of Fife (SEPA, 1999). The aquifer currently supplies some 20 Ml/d during the winter, rising to 40 Ml/d in the summer months, when irrigation boreholes are put into use. Groundwater provides an important back up to public water supplies, particularly during dry years when river abstraction is restricted. Despite this, relatively little is known about the overall renewable resource potential of the aquifer. It is also only in recent years that means of safeguarding groundwater from pollution have been investigated in any detail. Renewed interest in the aquifer is now being driven on two fronts. The first is that the East of Scotland Water Authority (ESWA) needs to expand its source provision due to increasing demand. The second is that the Scottish Environment Protection Agency (SEPA) needs to look more closely at the aquifer potential if in the future groundwater abstraction licensing is introduced in significant aquifers (Robins and Ball, 1998). In addition, the requirements of the proposed EU Water Framework Directive indicate that a greater understanding of the aquifer and the sources it supplies will be needed in order to implement properly integrated surface and groundwater management on a catchment basis. With these goals in mind, the East of Scotland Water Authority, Scottish Environment Protection Agency and NERC have jointly commissioned this preliminary study of the Eden valley aquifer

    Moment bounds for the Smoluchowski equation and their consequences

    Full text link
    We prove uniform bounds on moments X_a = \sum_{m}{m^a f_m(x,t)} of the Smoluchowski coagulation equations with diffusion, valid in any dimension. If the collision propensities \alpha(n,m) of mass n and mass m particles grow more slowly than (n+m)(d(n) + d(m)), and the diffusion rate d(\cdot) is non-increasing and satisfies m^{-b_1} \leq d(m) \leq m^{-b_2} for some b_1 and b_2 satisfying 0 \leq b_2 < b_1 < \infty, then any weak solution satisfies X_a \in L^{\infty}(\mathbb{R}^d \times [0,T]) \cap L^1(\mathbb{R}^d \times [0,T]) for every a \in \mathbb{N} and T \in (0,\infty), (provided that certain moments of the initial data are finite). As a consequence, we infer that these conditions are sufficient to ensure uniqueness of a weak solution and its conservation of mass.Comment: 30 page

    On selection criteria for problems with moving inhomogeneities

    Get PDF
    We study mechanical problems with multiple solutions and introduce a thermodynamic framework to formulate two different selection criteria in terms of macroscopic energy productions and fluxes. Studying simple examples for lattice motion we then compare the implications for both resting and moving inhomogeneities.Comment: revised version contains new introduction, numerical simulations of Riemann problems, and a more detailed discussion of the causality principle; 18 pages, several figure

    Minimal Subtraction vs. Physical Factorisation Schemes in Small-x QCD

    Full text link
    We investigate the relationship of ``physical'' parton densities defined by kt-factorisation, to those in the minimal subtraction scheme, by comparing their small-x behaviour. We first summarize recent results on the above scheme change derived from the BFKL equation at NLx level, and we then propose a simple extension to the renormalisation-group improved (RGI) equation. In this way we are able the examine the difference between resummed gluon distributions in the Q_0 and MSbar schemes and also to show MSbar scheme resummed results for P_gg and approximate ones for P_qg. We find that, due to the stability of the RGI approach, small-x resummation effects are not much affected by the scheme-change in the gluon channel, while they are relatively more sensitive for the quark-gluon mixing.Comment: 14 pages, 8 figure

    Study of K0(1430)K^*_0(1430) and a0(980)a_0(980) from BK0(1430)πB\to K^*_0(1430)\pi and Ba0(980)KB\to a_0(980)K Decays

    Full text link
    We use the decay modes BK0(1430)πB \to K^*_0(1430) \pi and Ba0(980)KB \to a_0(980) K to study the scalar mesons K0(1430)K^*_0(1430) and a0(980)a_0(980) within perturbative QCD framework. For BK0(1430)πB \to K^*_0(1430) \pi, we perform our calculation in two scenarios of the scalar meson spectrum. The results indicate that scenario II is more favored by experimental data than scenario I. The important contribution from annihilation diagrams can enhance the branching ratios about 50% in scenario I, and about 30% in scenario II. The predicted branching ratio of Ba0(980)KB \to a_0(980) K in scenario I is also less favored by the experiments. The direct CP asymmetries in BK0(1430)πB \to K^*_0(1430) \pi are small, which are consistent with the present experiments.Comment: More references are added. Published Versio

    Schur functions and their realizations in the slice hyperholomorphic setting

    Get PDF
    we start the study of Schur analysis in the quaternionic setting using the theory of slice hyperholomorphic functions. The novelty of our approach is that slice hyperholomorphic functions allows to write realizations in terms of a suitable resolvent, the so called S-resolvent operator and to extend several results that hold in the complex case to the quaternionic case. We discuss reproducing kernels, positive definite functions in this setting and we show how they can be obtained in our setting using the extension operator and the slice regular product. We define Schur multipliers, and find their co-isometric realization in terms of the associated de Branges-Rovnyak space

    A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    Get PDF
    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cross-section calculation can be achieved with reasonably small look-up table size by using the examples of jet production and electro-weak boson (Z, W) production in proton-proton collisions at a center-of-mass energy of 14 TeV at the LHC. The use of this technique in PDF fitting is demonstrated in a PDF-fit to HERA data and simulated LHC jet cross-sections as well as in a study of the jet cross-section uncertainties at various centre-of-mass energies

    First-principles study of the structural energetics of PdTi and PtTi

    Full text link
    The structural energetics of PdTi and PtTi have been studied using first-principles density-functional theory with pseudopotentials and a plane-wave basis. We predict that in both materials, the experimentally reported orthorhombic B19B19 phase will undergo a low-temperature phase transition to a monoclinic B19B19' ground state. Within a soft-mode framework, we relate the B19B19 structure to the cubic B2B2 structure, observed at high temperature, and the B19B19' structure to B19B19 via phonon modes strongly coupled to strain. In contrast to NiTi, the B19B19 structure is extremely close to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely transition mechanisms in the present case.Comment: 8 pages 5 figure
    corecore