19 research outputs found

    Cetuximab potentiates oxaliplatin cytotoxic effect through a defect in NER and DNA replication initiation

    Get PDF
    Preclinical studies have demonstrated that the chemotherapeutic action of oxaliplatin, a third generation platinum derivative, is improved when combined with cetuximab, a monoclonal antibody inhibitor of epidermal growth factor receptors. To explore the mechanism of this synergistic benefit, we used HCT-8 and HCT-116, two human colon cancer cell lines, respectively, responsive and non-responsive to the oxaliplatin/cetuximab combination. We examined the effect of drug exposure on glutathione-S-transferase-mediated oxaliplatin detoxification, DNA–platinum adducts formation, cell cycle distribution, apoptosis, and the expression of multiple targets involved in DNA replication, recombination, and repair. The major changes we found in HCT-8 were a stimulation of oxaliplatin–DNA adduct formation associated with reduced expression of the key enzyme (excision repair cross complementation group1: ERCC1) in the key repair process of oxaliplatin–DNA platinum adduct, the nucleotide excision repair (NER), both at the mRNA and protein levels. We also observed a reduced expression of factors involved in DNA replication initiation, which correlates with an enrichment of cells in the G1 phase of the cell cycle as well as an acceleration of apoptosis. None of these changes occurred in the non-responsive HCT-116 cell that we used as a negative control. These findings support the fact that cetuximab potentiates the oxaliplatin-mediated cytotoxic effect as the result of inhibition of NER and also DNA replication initiation

    EGFR-targeting drugs in combination with cytotoxic agents: from bench to bedside, a contrasted reality

    Get PDF
    The clinical experience recently reported with epidermal growth factor receptor (EGFR)-targeting drugs confirms the synergistic interactions observed between these compounds and conventional cytotoxic agents, which were previously established at the preclinical stage. There are, however, examples of major gaps between the bench and the bedside. Particularly demonstrative is the failure of the tyrosine kinase inhibitors (TKIs) (gefitinib and erlotinib) combined with chemotherapy in pretreated nonsmall cell lung cancer patients. These discrepancies can be due to several factors such as the methodology used to evaluate TKI plus cytotoxic agent combinations in preclinical models and the insufficient consideration given to the importance of the drug sequences for the tested combinations. Recent advances in understanding the biologic basis of acquired resistance to these agents have great potential to improve their clinical effectiveness. The purpose of this review is to critically examine the experimental conditions of the preclinical background for anti-EGFR drug–cytotoxic agent combinations and to attempt to explain the gap between clinical observations and preclinical data

    Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines

    Get PDF
    Background: EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and in combination with EGF. Methods: Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40 K array A. Results: Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this level of cell cycle distribution after treatment, suggesting a predominantly differentiated state. Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the 2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment. In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes appeared to be less stimulated than for single drug cases. Conclusion: This is the first study to have systematically investigated the effect of cetuximab or gefitinib, alone and in combination with EGF, on human colon cancer cell lines. The EGFR inhibitors have a weaker effect in the presence of EGF that binds EGFR. Cetuximab treatment showed an expression pattern that inversely correlates with EGF treatment. We found interesting cytomorphological features closely relating to gene expression profile. Both drugs have an effect on differentiation towards cellular death

    Preclinical emergence of vandetanib as a potent antitumour agent in mesothelioma: molecular mechanisms underlying its synergistic interaction with pemetrexed and carboplatin

    Get PDF
    BACKGROUND: Although pemetrexed, a potent thymidylate synthase (TS) inhibitor, enhances the cytoytoxic effect of platinum compounds against malignant pleural mesothelioma (MPM), novel combinations with effective targeted therapies are warranted. To this end, the current study evaluates new targeted agents and their pharmacological interaction with carboplatin-pemetrexed in human MPM cell lines. METHODS: We treated H2052, H2452, H28 and MSTO-211H cells with carboplatin, pemetrexed and targeted compounds (gefitinib, erlotinib, sorafenib, vandetanib, enzastaurin and ZM447439) and evaluated the modulation of pivotal pathways in drug activity and cancer cell proliferation. RESULTS: Vandetanib emerged as the compound with the most potent cytotoxic activity, which interacted synergistically with carboplatin and pemetrexed. Drug combinations blocked Akt phosphorylation and increased apoptosis. Vandetanib significantly downregulated epidermal growth factor receptor (EGFR)/Erk/Akt phosphorylation as well as E2F-1 mRNA and TS mRNA/protein levels. Moreover, pemetrexed decreased Akt phosphorylation and expression of DNA repair genes. Finally, most MPM samples displayed detectable levels of EGFR and TS, the variability of which could be used for patients' stratification in future trials with vandetanib-pemetrexed-carboplatin combination. CONCLUSION: Vandetanib markedly enhances pemetrexed-carboplatin activity against human MPM cells. Induction of apoptosis, modulation of EGFR/Akt/Erk phosphorylation and expression of key determinants for pemetrexed and carboplatin activity contribute to this synergistic interaction, and, together with the expression of these determinants in MPM samples, warrant further clinical investigation

    KRAS mutational status affects oxaliplatin-based chemotherapy independently from basal mRNA ERCC-1 expression in metastatic colorectal cancer patients

    No full text
    Background: In this study, we evaluated the possibility that KRAS mutational status might be predictive of oxaliplatin (OXA) efficacy. We also explored the role of excision repair cross complementing group-1 (ERCC-1). Methods: Ninety anti-epidermal growth factor receptor-naive advanced colorectal cancer patients were retrospectively analysed. In all patients KRAS mutational status was assessed. In 60 patients mRNA ERCC-1 expression was also investigated. Response rate (RR) and progression-free survival (PFS) after FOLFOX-6\ub1bevacizumab were evaluated according to KRAS status and mRNA ERCC-1 expression. Results: Among 90 patients 47% wild-type (wt) and 53% mutated (mt) KRAS tumours were found. Response rate was 26% in the wt KRAS group, whereas it was 56% in the mt KRAS group; the difference is statistically significant in the total sample (P\ubc0.008) and when only patients receiving FOLFOX-6\ub1bevacizumab as first-line are considered (P\ubc0.01). Progression-free survival was longer in mt than in wt KRAS patients over all patients (10 vs 8 months, respectively, P\ubc0.001) and in those treated as first-line (10 vs 8 months, respectively, P\ubc0.0069). Mt KRAS patients experienced a longer survival (24 vs 18 months; P\ubc0.01). ERCC-1 mRNA expression was not found to correlate with FOLFOX activity in our analysis. Conclusion: Our results suggest that activating mutation of KRAS oncogene may predict response to OXA. Basal expression of ERCC-1 mRNA does not explain the high efficacy of FOLFOX-6 in mt KRAS patients
    corecore