23 research outputs found

    DAFNE-Light DXR1 Soft X-Ray Synchrotron Radiation Beamline: Characteristics and XAFS Applications

    Get PDF
    X-ray Absorption Fine Structure Spectroscopy (XAFS) is a powerful technique to investigate the local atomic geometry and the chemical state of atoms in different types of materials, especially if lacking a long-range order, such as nanomaterials, liquids, amorphous and highly disordered systems, and polymers containing metallic atoms. The INFN-LNF DAΦNE-Light DXR1 beam line is mainly dedicated to soft X-ray absorption spectroscopy; it collects the radiation of a wiggler insertion device and covers the energy range from 0.9 to 3.0 keV or the range going from the K-edge of Na through to the K-edge of Cl. The characteristics of the beamline are reported here together with the XAFS spectra of reference compounds, in order to show some of the information achievable with this X-ray spectroscopy. Additionally, some examples of XAFS spectroscopy applications are also reported

    First approach to studies of sulphur electron DOS in prostate cancer cell lines and tissues studied by XANES

    Get PDF
    Abstract Urological cancers comprise approximately one-third of all cancers diagnosed in men worldwide and out of these, prostate cancer is the most common one ( WHO World Cancer Report, 2008 ). Several risk factors such as age, hormone levels, environmental conditions and family history are suspected to play a role in the onset of this disease of otherwise obscure aetiology. It is therefore the medical need that drives multidisciplinary research in this field, carried out by means of various experimental and theoretical techniques. Out of many relevant factors, it is believed that sulphur can take an important part in cancer transformations. We have investigated the prostate cancer cell lines and tissues, along with selected organic and inorganic compounds used as references, by the X-ray absorption fine structure spectroscopy near the sulphur edge energy region. Particularly, the comparison of the experimental results collected during XANES measurements and theoretical calculations of electron density of states with use of the FEFF8 code and LAPW (linearised augmented plane-wave) method has been performed and in this work the first results of our studies are presented

    Laboratory EXAFS in a dispersive mode

    Get PDF
    A laboratory dispersive mode spectrometer, capable of operating in either the analysing crystal transmission mode or a reflection mode, is described. Extended X-ray absorption fine structure (EXAFS) spectra of Re and ReO2, obtained in the transmission mode, compare favourably with those from a scanning spectrometer at a synchrotron source. Factors affecting resolution, intensity and background in this transmission mode are discussed. Experiments with asymmetric reflection geometries, which have shown both improved resolution for X-ray absorption near edge structure (XANES) and reduced collection times, are reported. Methods of reducing backgrounds due to multiple Bragg reflections and Compton scattering are proposed

    Anomalous wide-angle X-ray scattering apparatus on the GILDA beamline at the ESRF.

    Get PDF
    The experimental apparatus for anomalous wide-angle X-ray scattering (AWAXS) on the GILDA beamline at the ESRF is described. The main features are the high beam stability and reproducibility which allow anomalous scattering effects to be resolved also on dilute elements, the large spectral range which allows AWAXS experiments at the K edges of heavy elements, and the use of a high-efficiency detection system. The apparatus has been tested in extreme conditions by performing AWAXS experiments at the Eu K edge in Eu-doped Sr metaphosphate glasses

    Plasma-generated X-ray pulses: betatron radiation opportunities at EuPRAXIA@SPARC_LAB

    Get PDF
    EuPRAXIA is a leading European project aimed at the development of a dedicated, groundbreaking, ultra-compact accelerator research infrastructure based on novel plasma acceleration concepts and laser technology and on the development of their users’ communities. Within this framework, the Laboratori Nazionali di Frascati (LNF, INFN) will be equipped with a unique combination of an X-band RF LINAC generating high-brightness GeV-range electron beams, a 0.5 PW class laser system and the first fifth-generation free electron laser (FEL) source driven by a plasma-based accelerator, the EuPRAXIA@SPARC_LAB facility. Wiggler-like radiation emitted by electrons accelerated in plasma wakefields gives rise to brilliant, ultra-short X-ray pulses, called betatron radiation. Extensive studies have been performed at the FLAME laser facility at LNF, INFN, where betatron radiation was measured and characterized. The purpose of this paper is to describe the betatron spectrum emitted by particle wakefield acceleration at EuPRAXIA@SPARC_LAB and provide an overview of the foreseen applications of this specific source, thus helping to establish a future user community interested in (possibly coupled) FEL and betatron radiation experiments. In order to provide a quantitative estimate of the expected betatron spectrum and therefore to present suitable applications, we performed simple simulations to determine the spectrum of the betatron radiation emitted at EuPRAXIA@SPARC_LAB. With reference to experiments performed exploiting similar betatron sources, we highlight the opportunities offered by its brilliant femtosecond pulses for ultra-fast X-ray spectroscopy and imaging measurements, but also as an ancillary tool for designing and testing FEL instrumentation and experiments

    The potential of eupraxia@sparc_lab for radiation based techniques

    Get PDF
    A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 1012 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.Fil: Balerna, Antonella. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bartocci, Samanta. Università degli studi di Sassari; ItaliaFil: Batignani, Giovanni. Università degli studi di Roma "La Sapienza"; ItaliaFil: Cianchi, Alessandro. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Chiadroni, Enrica. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Coreno, Marcello. Istituto Nazionale Di Fisica Nucleare.; Italia. Istituto di Struttura della Materia; ItaliaFil: Cricenti, Antonio. Istituto di Struttura della Materia; ItaliaFil: Dabagov, Sultan. Istituto Nazionale Di Fisica Nucleare.; Italia. National Research Nuclear University; Rusia. Lebedev Physical Institute; RusiaFil: Di Cicco, Andrea. Universita Degli Di Camerino; ItaliaFil: Faiferri, Massimo. Università degli studi di Sassari; ItaliaFil: Ferrante, Carino. Università degli studi di Roma “La Sapienza”; Italia. Center for Life Nano Science @Sapienza; ItaliaFil: Ferrario, Massimo. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Fumero, Giuseppe. Università degli studi di Roma “La Sapienza”; ItaliaFil: Giannessi, Luca. Elettra-Sincrotrone Trieste; Italia. ENEA C.R. Frascati; ItaliaFil: Gunnella, Roberto. Universita Degli Di Camerino; ItaliaFil: Leani, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Lupi, Stefano. Università degli studi di Roma “La Sapienza”; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma La Sapienza; ItaliaFil: Macis, Salvatore. Università degli Studi di Roma Tor Vergata; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma Tor Vergata; ItaliaFil: Manca, Rosa. Università degli studi di Sassari; ItaliaFil: Marcelli, Augusto. Istituto Nazionale Di Fisica Nucleare.; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Masciovecchio, Claudio. Elettra-Sincrotrone Trieste; ItaliaFil: Minicucci, Marco. Universita Degli Di Camerino; ItaliaFil: Morante, Silvia. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Perfetto, Enrico. Universita Tor Vergata; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Petrarca, Massimo. Università degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Pusceddu, Fabrizio. Università degli studi di Sassari; ItaliaFil: Rezvani, Javad. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Robledo, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Rossi, Giancarlo. Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”; Italia. Istituto Nazionale Di Fisica Nucleare.; Italia. Universita Tor Vergata; ItaliaFil: Sanchez, Hector Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Scopigno, Tullio. Center for Life Nano Science @Sapienza; Italia. Università degli studi di Roma "La Sapienza"; ItaliaFil: Stefanucci, Gianluca. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Stellato, Francesco. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Trapananti, Angela. Universita Degli Di Camerino; ItaliaFil: Villa, Fabio. Istituto Nazionale Di Fisica Nucleare.; Itali

    The INFN-LNF present and future accelerator-based light facilities

    No full text
    The INFN-Frascati National Laboratory (LNF) is nowadays running a 0.51 GeV electron-positron collider, DA Phi NE, that also represents the synchrotron radiation source of the beamlines of the DA Phi NE-Light facility. Not being DA Phi NEdedicated to synchrotron radiations activities, the DA Phi NE-Light facility can use it mainly in parasitic mode. Particle accelerators and high energy physics (HEP) have been and are the main core of the LNF research activity, but like other HEP international laboratories also LNF is now moving in the direction of developing a dedicated free electron laser (FEL) user facility, EuPRAXIA@SPARC_Lab, based on plasma acceleration. This new facility in the framework of the EuPRAXIA (European Plasma Research Accelerator with eXcellence in Applications) EU project should produce FEL radiation beams for a wide range of applications using a smaller accelerator compared to actual radio frequency-based accelerator sources dimensions

    Solvated Metal Atoms in the Preparation of Supported Gold Catalysts

    No full text
    Several reviews appeared in the last years to emphasize the unique properties showed by gold metal, when particle size falls in nanometers range. Au nanoparticles (NPs) have found uses in ceramics, medicine, and other areas. Among them the most exciting and growing field of application is undoubtedly catalysis. Historically, gold was regarded to be catalytically inert, since the discoveries made by Haruta and Hutchings. in the late 1980s: surprisingly, they demonstrated simultaneously and independently that supported gold nanoparticles are the best catalyst for low-temperature CO oxidation and ethyne chlorination to vinylchloride. In recent years, it has been shown that gold becomes active for many novel reactions of synthetic interest when stabilized in the form of nanoparticles deposited on several organic and inorganic supports. Supported Au NPs have found numerous applications as unique catalysts in aerobic oxidative processes, reduction of organic compounds, C-C coupling reactions, etc. Moreover, the ability of gold to coordinate with triple bonds has no parallel with other transition metals. Upon coordination and formation of the corresponding adduct, the alkyne becomes activated and more reactive towards nucleophiles such as alcohols, amines and hydrosilanes. It was clearly evidenced that particle size play a crucial role in determining catalytic activity of supported gold particles in CO oxidation, as well as in others reactions. On the other hands, it has been also demonstrated that the superficial oxidation state of the metal, the nature of the support, the Au-support interface and the particle morphology may strongly affect catalytic performance of AuNPs. All these findings have increased the efforts made by scientist to investigate how the different preparation methods can affects the above mentioned factors. In this chapter we intend to provide a synapsis of the synthesis of supported gold catalysts by the metal vapor synthesis (MVS) approach. In particular, the contribution includes the work undertaken till date in our and other research groups pointing out the key factors to control the size of Au nanoparticles by this synthetic method

    Structural characterization of bimetallic Pd-Cu vapor derived catalysts

    No full text
    Pd-Cu bimetallic Solvated Metal Atoms (SMA) were synthesized by metal vapor synthesis technique and supported on PVPy resin. Since the catalytic activity, of the Pd-Cu system turned out to be quite high also compared to the corresponding monometallic system, a structural characterization, using electron microscopy techniques and X-ray Absorption Fine Structure spectroscopy, was performed. HRTEM analysis showed the presence of Pd particles distributed in a narrow range with a mean diameter of about 2.5 nm while the XAFS analysis, confirmed the presence of the Pd nanoparticles but revealed also some alloying with Cu atoms
    corecore