13 research outputs found

    Sleep apnea syndrome in an elderly population admitted to a geriatric unit : prevalence and effect on cognitive function

    Get PDF
    International audienceBackground Sleep apnea leads to cognitive impairment in older patients, but its association with neurodegeneration remains controversial, and most studies do not distinguish between the more common obstructive form (OSAS) and the rarer central form (CSAS). Objective The purpose of this study was to assess the prevalence of the different forms of sleep apnea in a cohort of cognitively impaired elderly patients (>70 years) and to investigate their associations with cognitive deficit, weighted against known risk factors for neurodegeneration. Methods Overnight polygraphy was performed for 76 consecutive patients admitted to our geriatric unit. Their cognitive function was assessed using the Mini Mental-State Exam (MMSE), Mattis Dementia Rating Scale (MDRS) and Stroop test. Multivariable analyses were performed to determine associations between cognitive function and independent variables describing demographics, sleep apnea measures, and cardiovascular risk factors. Results The cohort comprised 58 women and 18 men aged a mean of 84 years (range, 73-96). Sleep apnea syndrome (SAS) was diagnosed in 48 patients (63%), of which 31 (41%) with OSAS and 17 (22%) with CSAS. Multivariable regression analysis revealed that MDRS was lower in patients with OSAS (beta = -10.03, p = 0.018), that Stroop Colors and Words delays increased with AHI (beta = 0.17, p = 0.030 and beta = 0.31, p = 0.047) and that that Stroop Interference delay was higher in patients with CSAS (beta = 24.45, p = 0.002). Conclusion Sleep apnea is thus highly prevalent in elderly patients with cognitive impairment. OSAS was associated with lower general cognitive function, while CSAS was only associated with increased Stroop Interference delays. Elderly patients with cognitive deficit could benefit from sleep apnea screening and treatment

    Compliance of the cerebrospinal space: comparison of three methods

    Get PDF
    Abstract: Background: Cerebrospinal compliance describes the ability of the cerebrospinal space to buffer changes in volume. Diminished compliance is associated with increased risk of potentially threatening increases in intracranial pressure (ICP) when changes in cerebrospinal volume occur. However, despite various methods of estimation proposed so far, compliance is seldom used in clinical practice. This study aimed to compare three measures of cerebrospinal compliance. Methods: ICP recordings from 36 normal-pressure hydrocephalus patients who underwent infusion tests with parallel recording of transcranial Doppler blood flow velocity were retrospectively analysed. Three methods were used to calculate compliance estimates during changes in the mean ICP induced by infusion of fluid into the cerebrospinal fluid space: (a) based on Marmarou’s model of cerebrospinal fluid dynamics (CCSF), (b) based on the evaluation of changes in cerebral arterial blood volume (CCaBV), and (c) based on the amplitudes of peaks P1 and P2 of ICP pulse waveform (CP1/P2). Results: Increase in ICP caused a significant decrease in all compliance estimates (p < 0.0001). Time courses of compliance estimators were strongly positively correlated with each other (group-averaged Spearman correlation coefficients: 0.94 [0.88–0.97] for CCSF vs. CCaBV, 0.77 [0.63–0.91] for CCSF vs. CP1/P2, and 0.68 [0.48–0.91] for CCaBV vs. CP1/P2). Conclusions: Indirect methods, CCaBV and CP1/P2, allow for the assessment of relative changes in cerebrospinal compliance and produce results exhibiting good correlation with the direct method of volumetric manipulation. This opens the possibility of monitoring relative changes in compliance continuously

    Reduced CSF turnover and decreased ventricular Aβ42 levels are related

    Get PDF
    International audienceBACKGROUND: The appearance of Aβ42 peptide deposits is admitted to be a key event in the pathogenesis of Alzheimer's disease, although amyloid deposits also occur in aged non-demented subjects. Aβ42 is a degradation product of the amyloid protein precursor (APP). It can be catabolized by several enzymes, reabsorbed by capillaries or cleared into cerebrospinal fluid (CSF). The possible involvement of a decrease in CSF turnover in A4β2 deposit formation is up to now poorly known. We therefore investigated a possible relationship between a reduced CSF turnover and the CSF levels of the A4β2 peptide.To this aim, CSF of 31 patients with decreased CSF turnover were studied. These patients presented chronic hydrocephalus communicating or obstructive, which required surgery (ventriculostomy or ventriculo-peritoneal shunt). Nine subjects had idiopathic normal pressure hydrocephalus (iNPH), and the other 22 chronic hydrocephalus from other origins (oCH).The Aβ42 peptide concentration was measured by an ELISA test in 31 ventricular CSF samples and in 5 lumbar CSF samples from patients with communicating hydrocephalus. RESULTS: The 5 patients with lumbar CSF analysis had similar levels of lumbar and ventricular Aβ42. A significant reduction in Aβ42 ventricular levels was observed in 24 / 31 patients with hydrocephalus. The values were lower than 300 pg/ml in 5 out of 9 subjects with iNPH, and in 15 out of 22 subjects with oCH. CONCLUSION: The decrease of CSF Aβ42 seems to occur independently of the surgical hydrocephalus aetiology. This suggests that a CSF reduced turnover may play an important role in the decrease of CSF Aβ42 concentration

    A Phase-Contrast MRI Study to Investigate the Interaction of the CSF Dynamic with the Intracranial CSF Distribution

    Get PDF
    PURPOSES: Cine PC-MRI has shown that CSF oscillations increase with age, while the ratio between the CSF Oscillation in the aqueduct and the spinal canal is constant. Our aim was to test whether the CSF hydrodynamic can bring complementary information to study pediatric population with an increase of the CSF volume. Material and Method: Forty three patients, newborns and children (mean age: 31 ± 32 months; 5 days - 111 months) with an intracranial CSF volume increase (ventricular or/and subarachnoid spaces) underwent a morphological MRI along with cine PC-MRI to quantify CSF oscillations. We defined a ratio of the ventricular area to that of the intracranial subarachnoid spaces (CSFratio). We also determined an index called CSFdynamic, which equals the CSF aqueduct stroke volume (SVAq) divided by the cervical stroke volume (SVC2C3) at the level C2C3 in the spine. RESULTS: Twenty-three patients presented only ventricular dilatation: CSFdynamic = 20 ± 25; CSFratio: 120 ± 151; with no significant correlation, (rs = 0.152, p = 0.48). Sixteen patients presented both ventricular and subarachnoid space dilations: CSFdynamic = 18 ± 17; CSFratio = 1.67 ± 0.81; with significant positive correlation (rs = 0.5911 p = 0.016). CONCLUSIONS: In pediatric population, the absence of correlation between the dynamic of the CSF and its volume shows that the CSF oscillation does not result only of the size of the ventricles and/or the subarachnoid spaces. The CSF oscillations bring complementary information concerning the active aspect of the CSF

    A Coupled Simulation of Spinal Cord Blood Flow and Cerebrospinal Fluid Motion in the Spinal Subarachnoid Space Based on In Vivo Measurements

    No full text
    A preliminary coupled 1-D model of the systemic arterial tree and cerebrospinal fluid (CSF) system was constructed. The systemic tree model includes arteries greater than 2 mm in diameter and a simplified spinal cord vasculature. Coupling of the arterial tree and CSF system is accomplished by a transfer function based on in vivo cerebral blood flow (CBF) and CSF pulsation measurements in 17 young healthy adults

    An innovative approach to investigate the dynamics of the cerebrospinal fluid in the prepontine cistern: A feasibility study using spatial saturation-prepared cine PC-MRI

    Get PDF
    Purposes: Accurate measurements of the cerebrospinal fluid that flows through the prepontine cistern (PPC) are challenging due to artefacts originating from basilar artery blood flow. We aim to accurately quantify cerebrospinal fluid (CSF) flow and stroke volume in the PPC, which is essential before endoscopic third ventriculostomy. Materials and methods: We developed a new PC-MRI sequence prepared with Hadamard saturation bands to accurately quantify CSF flow in the PPC by suppressing the blood signal in the surrounding vessels. In total, 28 adult hydrocephalic patients (age 59 ± 20 years) were scanned using conventional PC-MRI and our developed sequence. CSF was separately extracted from the PPC and the foramen of Magendie, and flow (min and max) and stroke volume were quantified. Results: Our modifications result in a complete deletion of signal from flowing blood, resulting in significantly reduced CSF stroke volume (Conv = 446 ± 113 mm3, Dev = 390 ± 119 mm3, p = 0.006) and flow, both minimum (Conv = −1630 ± 486 mm3/s, Dev = −1430 ± 406 mm3/s, p = 0.005) and maximum (Conv = 2384 ± 657 mm3/s, Dev = 1971 ± 62 mm3/s, p = 0.002) compared with the conventional sequence, whereas no change in the area of interest was noted (Conv = 236 ± 65 mm2, Dev = 249 ± 75 mm2, p = 0.21). Conclusions: Accurate and reproducible CSF flow and stroke volume measurements in the PPC can be achieved with sat-band prepared cine PC-MRI

    A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system

    No full text
    Martin BA, Reymond P, Novy J, Baledent O, Stergiopulos N. A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system. Am J Physiol Heart Circ Physiol 302: H1492-H1509, 2012. First published January 20, 2012; doi: 10.1152/ajpheart.00658.2011.-Coupling of the cardiovascular and cerebrospinal fluid (CSF) system is considered to be important to understand the pathophysiology of cerebrovascular and craniospinal disease and intrathecal drug delivery. A coupled cardiovascular and CSF system model was designed to examine the relation of spinal cord (SC) blood flow (SCBF) and CSF pulsations along the spinal subarachnoid space (SSS). A one-dimensional (1-D) cardiovascular tree model was constructed including a simplified SC arterial network. Connection between the cardiovascular and CSF system was accomplished by a transfer function based on in vivo measurements of CSF and cerebral blood flow. A 1-D tube model of the SSS was constructed based on in vivo measurements in the literature. Pressure and flow throughout the cardiovascular and CSF system were determined for different values of craniospinal compliance. SCBF results indicated that the cervical, thoracic, and lumbar SC each had a signature waveform shape. The cerebral blood flow to CSF transfer function reproduced an in vivo-like CSF flow waveform. The 1-D tube model of the SSS resulted in a distribution of CSF pressure and flow and a wave speed that were similar to those in vivo. The SCBF to CSF pulse delay was found to vary a great degree along the spine depending on craniospinal compliance and vascular anatomy. The properties and anatomy of the SC arterial network and SSS were found to have an important impact on pressure and flow and perivascular fluid movement to the SC. Overall, the coupled model provides predictions about the flow and pressure environment in the SC and SSS. More detailed measurements are needed to fully validate the model

    A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets

    No full text
    Abstract Background The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. Methods A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. Results The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm3. Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm3. Surface area of these features was 318.52, 112.2 and 232.1 cm2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. Conclusions This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics
    corecore