107 research outputs found

    Linkage mapping of benign familial infantile convulsions (BFIC) to chromosome 19q

    Get PDF
    Benign familial infantile convulsions (BFIC) are an autosomal-dominant epileptic syndrome characterized by an age of onset within the first year of life. Although they were first reported in families of Italian descent, BFIC have also been described in non-Italian families. We have mapped the BFIC gene to chromosome 19 by linkage analysis in five Italian families with a maximum two-point lod score of 6.36 at D19S114; maximum multipoint lod scores >8 were obtained for the interval D19S250-D19S245. BFIC are therefore the third idiopathic partial epileptic syndrome to be mapped on the human genom

    From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?

    Get PDF
    The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent ‘perverted’ sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep

    Tendinopathie rotulienne : Épidémiologie, traitements et prévention

    No full text
    corecore