6,263 research outputs found

    Cooling method prolongs life of hot-wire transducer

    Get PDF
    To cool a hot-wire transducer, the two ends of the wire are supported on thermally and electrically conductive rods, surrounded by a fluid cooling medium. By keeping the supporting rods at a substantially constant temperature, the probe is prevented from overheating

    A site-specific standard for comparing dynamic solar ultraviolet protection characteristics of established tree canopies

    Get PDF
    A standardised procedure for making fair and comparable assessments of the ultraviolet protection of an established tree canopy that takes into account canopy movement and the changing position of the sun is presented for use by government, planning, and environmental health authorities. The technique utilises video image capture and replaces the need for measurement by ultraviolet radiometers for surveying shade quality characteristics of trees growing in public parks, playgrounds and urban settings. The technique improves upon tree shade assessments that may be based upon single measurements of the ultraviolet irradiance observed from a fixed point of view. The presented technique demonstrates how intelligent shade audits can be conducted without the need for specialist equipment, enabling the calculation of the Shade Protection Index (SPI) and Ultraviolet Protection Factor (UPF) for any discreet time interval and over a full calendar year

    Preliminary survey of propulsion using chemical energy stored in the upper atmosphere

    Get PDF
    Ram-jet cycles that use the chemical energy of dissociated oxygen for propulsion in the ionosphere are presented. After a review of the properties and compositions of the upper atmosphere, the external drag, recombination kinetics, and aerodynamic-heating problems of an orbiting ram jet are analyzed. The study indicates that the recombination ram jet might be useful for sustaining a satellite at an altitude of about 60 miles. Atmospheric composition and recombination-rate coefficients were too uncertain for more definite conclusions. The ram jet is a marginal device even in the optimistic view

    Decoherence of charge qubit coupled to interacting background charges

    Get PDF
    The major contribution to decoherence of a double quantum dot or a Josephson junction charge qubit comes from the electrostatic coupling to fluctuating background charges hybridized with the conduction electrons in the reservoir. However, estimations according to previously developed theories show that finding a sufficient number of effective fluctuators in a realistic experimental layout is quite improbable. We show that this paradox is resolved by allowing for a short-range Coulomb interaction of the fluctuators with the electrons in the reservoir. This dramatically enhances both the number of effective fluctuators and their contribution to decoherence, resulting in the most dangerous decoherence mechanism for charge qubits.Comment: 4 pages, 1 figur

    Spin-Mediated Mott Excitons

    Full text link
    Motivated by recent experiments on Mott insulators, in both iridates and ultracold atoms, we theoretically study the effects of magnetic order on the Mott-Hubbard excitons. In particular, we focus on spin-mediated doublon-holon pairing in Hubbard materials. We use several complementary theoretical techniques: mean-field theory to describe the spin degrees of freedom, the self-consistent Born approximation to characterize individual charge excitations across the Hubbard gap, and the Bethe-Salpeter equation to identify bound states of doublons and holons. The binding energy of the Hubbard exciton is found to increase with increasing the N{\'e}el order parameter, while the exciton mass decreases. We observe that these trends rely significantly on the retardation of the effective interaction, and require consideration of multiple effects from changing the magnetic order. Our results are consistent with the key qualitative trends observed in recent experiments on iridates. Moreover, the findings could have direct implications on ultracold atom Mott insulators, where the Hubbard model is the exact description of the system and the microscopic degrees of freedom can be directly accessed.Comment: 11 pages, 11 figure

    Spin Susceptibility of an Ultra-Low Density Two Dimensional Electron System

    Full text link
    We determine the spin susceptibility in a two dimensional electron system in GaAs/AlGaAs over a wide range of low densities from 2Ɨ109\times10^{9}cmāˆ’2^{-2} to 4Ɨ1010\times10^{10}cmāˆ’2^{-2}. Our data can be fitted to an equation that describes the density dependence as well as the polarization dependence of the spin susceptibility. It can account for the anomalous g-factors reported recently in GaAs electron and hole systems. The paramagnetic spin susceptibility increases with decreasing density as expected from theoretical calculations.Comment: 5 pages, 2 eps figures, to appear in PR

    Multilocus sequence types of invasive Corynebacterium diphtheriae isolated in the Rio de Janeiro urban area, Brazil

    Get PDF
    Invasive infections caused by Corynebacterium diphtheriae in vaccinated and non-vaccinated individuals have been reported increasingly. In this study we used multilocus sequence typing (MLST) to study genetic relationships between six invasive strains of this bacterium isolated solely in the urban area of Rio de Janeiro, Brazil, during a 10-year period. Of note, all the strains rendered negative results in PCR reactions for the tox gene, and four strains presented an atypical sucrose-fermenting ability. Five strains represented new sequence types. MLST results did not support the hypothesis that invasive (sucrose-positive) strains of C. diphtheriae are part of a single clonal complex. Instead, one of the main findings of the study was that such strains can be normally found in clonal complexes with strains related to non-invasive disease. Comparative analyses with C. diphtheriae isolated in different countries provided further information on the geographical circulation of some sequence types

    Fermi edge singularity in neutral electron-hole system

    Full text link
    In neutral dense electron-hole (e-h) systems at low temperatures, theory predicts Cooper-pair-like excitons at the Fermi energy and a BCS-like exciton condensation. Optical excitation allows creating e-h systems with the densities controlled by the excitation power. However, the intense optical excitations required to achieve high densities cause substantial heating of the e-h system that prevents the realization of dense and cold e-h systems in conventional semiconductors. In this work, we study e-h systems created by optical excitation in separated electron and hole layers. The layer separation increases the e-h recombination time and, in turn, the density for a given optical excitation by orders of magnitude and, as a result, enables the realization of the dense and cold e-h system. We found a strong enhancement of photoluminescence intensity at the Fermi energy of the neutral dense ultracold e-h system that evidences the emergence of excitonic Fermi edge singularity due to the Cooper-pair-like excitons at the Fermi energy
    • ā€¦
    corecore