537 research outputs found

    Computer aided design and simulation of an intergrated photonic delay line system for phased array antenna and other microve signal processing applications

    Get PDF
    Over the past few years, phased array antennas and variable RF/Microwave delay lines have been the subject of much research. This thesis presents a photonic solution to the generation of multiple, compact delay lines. Variable time delays are generated by optically tapping points on an acousto-optic cell by the use of a deformable mirror device. Isolation of a particular time delay is accomplished by the conversion of a time delay point into a corresponding spatial frequency by the use of appropriate optics. The desired time delay is recovered by heterodyning a local oscillator with the desired spatial frequency, selected by a tiltable mirror device. Multiple delay lines are produced by the use of a binary optic device. The design and simulation of the integrated optical system was carried out using a real ray tracing program written by the author. Theoretical signal to noise calculations are also carried out

    Anomaly of Film Porosity Dependence on Deposition Rate

    Full text link
    This Letter reports an anomaly of film porosity dependence on deposition rate during physical vapor deposition - the porosity increases as deposition rate decreases. Using glancing angle deposition of Cu on SiO2 substrate, the authors show that the Cu film consists of well separated nanorods when the deposition rate is 1 nm/second, and that the Cu films consists of a more uniform (or lower porosity) film when the deposition rate is 6 nm/second; all other deposition conditions remain the same. This anomaly is the result of interplay among substrate non-wetting, density of Cu nuclei on the substrate, and the minimum diameter of nanorods

    An Innovative Approach for Community Engagement: Using an Audience Response System

    Full text link
    Community-based participatory research methods allow for community engagement in the effort to reduce cancer health disparities. Community engagement involves health professionals becoming a part of the community in order to build trust, learn from the community and empower them to reduce disparities through their own initiatives and ideas. Audience Response Systems (ARS) are an innovative and engaging way to involve the community and obtain data for research purposes using keypads to report results via power point. The use of ARS within communities is very limited and serves to widen the disparity gap by not delivering new advances in medical knowledge and technology among all population groups. ARS was implemented at a community town hall event sponsored by a National Institute on Minority Health and Health Disparities Exploratory Center of Excellence, the Center for Equal Health. Participants appreciated being able to see how everyone else answered and felt included in the research process. ARS is beneficial because the community can answer truthfully and provides instant research results. Additionally, researchers can collect large amounts of data quickly, in a non-threatening way while tracking individual responses anonymously. Audience Response Systems proved to be an effective tool for successfully accomplishing community-based participatory research

    Changes in initial COPD treatment choice over time and factors influencing prescribing decisions in UK primary care : a real-world study

    Get PDF
    Acknowledgements Samantha Holmes (CircleScience, an Ashfield Company, part of UDG Healthcare plc) and Paul Hutchin (contracted to CircleScience, an Ashfield Company, part of UDG Healthcare plc) provided medical writing assistance. Funding The study was funded by Novartis Pharma AG (Basel, Switzerland).Peer reviewedPublisher PD

    Endocardial cells are a distinct endothelial lineage derived from Flk1+ multipotent cardiovascular progenitors

    Get PDF
    Identification of multipotent cardiac progenitors has provided important insights into the mechanisms of myocardial lineage specification, yet has done little to clarify the origin of the endocardium. Despite its essential role in heart development, characterization of the endocardial lineage has been limited by the lack of specific markers of this early vascular subpopulation. To distinguish endocardium from other vasculature, we generated an BAC transgenic mouse line capable of labeling this specific endothelial subpopulation at the earliest stages of cardiac development. To further characterize endocardiogenesis, embryonic stem cells (ESCs) derived from blastocysts were utilized to demonstrate that endocardial differentiation recapitulates the close temporal–spatial relationship observed between myocardium and endocardium seen . Endocardium is specified as a cardiac cell lineage, independent from other vascular populations, responding to BMP and Wnt signals that enhance cardiomyocyte differentiation. Furthermore, a population of Flk1+ cardiovascular progenitors, distinct from hemangioblast precursors, represents a mesodermal precursor of the endocardial endothelium, as well as other cardiovascular lineages. Taken together, these studies emphasize that the endocardium is a unique cardiac lineage and provides further evidence that endocardium and myocardium are derived from a common precursor

    The influence of 3-D interfacial structure and morphology on the mechanical behavior of nanocomposites

    Get PDF
    2-dimensional (2D) sharp interfaces with distinct boundaries demarcating an abrupt discontinuity in material properties in nanolayered composites have been studied for almost twenty years and are responsible for enhanced behaviors such as strength, radiation damage tolerance, and deformability. However, 2-D interfaces have their limitations with respect to deformability and toughness. 3D interfaces are defined as heterophase interfaces that extend out of plane into the two crystals on either side and are chemically, crystallographically, and/or topologically divergent, in three dimensions, from both crystals they join. Here, we present the mechanical behavior of two different classes of nanocomposites: 1.) nanolayered Cu/Nb containing interfaces with 3D character and 2.) Tungsten-based 3D ordered mesoporous composites consisting of a porous W scaffolding with silicon carbide or silicon nitride infill. Micropillar compression results show that the strength of Cu/Nb nanocomposites containing 3D interfaces is significantly greater than those containing 2D interfaces. Shear banding in 3D Cu/Nb is observed during pillar compression with retention of continuous layers across the shear band. We will present our recent results on deformation of such 3-D interfaces and structures, and describe this evolution mechanistically through the use of atomistic simulations. Please click Additional Files below to see the full abstract
    corecore