94 research outputs found
Adaptive optics in high-contrast imaging
The development of adaptive optics (AO) played a major role in modern
astronomy over the last three decades. By compensating for the atmospheric
turbulence, these systems enable to reach the diffraction limit on large
telescopes. In this review, we will focus on high contrast applications of
adaptive optics, namely, imaging the close vicinity of bright stellar objects
and revealing regions otherwise hidden within the turbulent halo of the
atmosphere to look for objects with a contrast ratio lower than 10^-4 with
respect to the central star. Such high-contrast AO-corrected observations have
led to fundamental results in our current understanding of planetary formation
and evolution as well as stellar evolution. AO systems equipped three
generations of instruments, from the first pioneering experiments in the
nineties, to the first wave of instruments on 8m-class telescopes in the years
2000, and finally to the extreme AO systems that have recently started
operations. Along with high-contrast techniques, AO enables to reveal the
circumstellar environment: massive protoplanetary disks featuring spiral arms,
gaps or other asymmetries hinting at on-going planet formation, young giant
planets shining in thermal emission, or tenuous debris disks and micron-sized
dust leftover from collisions in massive asteroid-belt analogs. After
introducing the science case and technical requirements, we will review the
architecture of standard and extreme AO systems, before presenting a few
selected science highlights obtained with recent AO instruments.Comment: 24 pages, 14 figure
Recommended from our members
In-well sediment incubators to evaluate microbial community stability and dynamics following bioimmobilization of uranium
Physiological and biochemical adaptations to training in Rana pipiens
Fifteen Rana pipiens were trained on a treadmill thrice weekly for 6.5 weeks to assess the effects of training on an animal that supports activity primarily through anaerobiosis. Endurance for activity increased 35% in these frogs as a result of training ( P =0.006, Fig. 1). This increased performance was not due to enhanced anaerobiosis. Total lactate produced during exercise did not differ significantly for the trained or untrained animals in either gastrocnemius muscle (2.77±0.21 and 2.82±0.13 mg/g, respectively) or whole body (1.32±0.10 and 1.47±0.06 mg/g, respectively). Glycogen depletion also did not differ between the two groups (Fig. 2c). The primary response to training appeared to involve augmentation of aerobic metabolism, a response similar to that reported for mammals. Gastrocnemius muscles of trained frogs underwent a 38% increase over those of untrained individuals in the maximum activity of citrate synthase (14.5±1.0 and 10.5±0.9 μmoles/(g wet wt·min); P =0.008). This enzyme was also positively correlated with the level of maximum performance for all animals tested ( r =0.61, P <0.01) and with the degree of improvement in the trained animals ( r =0.72, P <0.05). In addition to an increased aerobic capacity, the trained animals demonstrated a greater removal of lactate from the muscle 15 min after fatigue (Fig. 2b).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47124/1/360_2004_Article_BF00710002.pd
Allan Sandage and the Cosmic Expansion
This is an account of Allan Sandage's work on (1) The character of the
expansion field. For many years he has been the strongest defender of an
expanding Universe. He later explained the CMB dipole by a local velocity of
220 +/- 50 km/s toward the Virgo cluster and by a bulk motion of the Local
supercluster (extending out to ~3500 km/s) of 450-500 km/s toward an apex at
l=275, b=12. Allowing for these streaming velocities he found linear expansion
to hold down to local scales (~300 km/s). (2) The calibration of the Hubble
constant. Probing different methods he finally adopted - from
Cepheid-calibrated SNe Ia and from independent RR Lyr-calibrated TRGBs - H_0 =
62.3 +/- 1.3 +/- 5.0 km/s/Mpc.Comment: 12 pages, 11 figures, 1 table, Submitted to Astrophysics and Space
Science, Special Issue on the Fundamental Cosmic Distance Scale in the Gaia
Er
Psychology and aggression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
Optical observation of the 3s sigma F-g (3)Pi(u) Rydberg state of N-2
Using ultrahigh-resolution 1 XUV+1 UV two-photon ionization laser spectroscopy, the F (3)Pi(u)<- X (1)Sigma(g)(+)(0,0) transition of N-2 has been optically observed for the first time, and the 3s sigma(g)F (3)Pi(u)(upsilon=0) Rydberg level fully characterized with rotational resolution. The experimental spectroscopic parameters and predissociation level widths suggest strong interactions between the F state and the 3p pi(u)G (3)Pi(u) Rydberg and C-' (3)Pi(u) valence states, analogous to those well known in the case of the isoconfigurational (1)Pi(u) states. (c) 2005 American Institute of Physics
Extreme ultraviolet laser excitation of isotopic molecular nitrogen: The dipole-allowed spectrum of N-15(2) and (NN)-N-14-N-15
An XUV-laser-spectroscopic study of th
- …