506 research outputs found

    Long-Wave Forcing by the Breaking of Random Gravity Waves on a Beach

    Get PDF
    This paper presents new laboratory data on long-wave (surf-beat) forcing by the random breaking of shorter gravity water waves on a plane beach. The data include incident and outgoing wave amplitudes, together with shoreline oscillation amplitudes at long-wave frequencies, from which the correlation between forced long waves and short-wave groups is examined. A detailed analysis of the cross-shore structure of the long-wave motion is presented, and the observations are critically compared with existing theories for two-dimensional surf-beat generation. The surf beat shows a strong dependency on normalized surf-zone width, consistent with long-wave forcing by a time-varying breakpoint, with little evidence of the release and reflection of incident bound long waves for the random-wave simulations considered. The seaward-propagating long waves show a positive correlation with incident short-wave groups and are linearly dependent on short-wave amplitude. The phase relationship between the incident bound long waves and radiated free long waves is also consistent with breakpoint forcing. In combination with previous work, the present data suggest that the breakpoint variability may be the dominant forcing mechanism during conditions with steep incident short waves

    Bed shear stress measurements in dam break and swash flows

    Get PDF
    A novel shear plate was used to make direct bed shear stress measurements in laboratory dam break and swash flows on smooth, fixed, impermeable beds. The pressure gradient due to the slope of the fluid free-surface across the plate was measured using pressure transducers. Surface elevation was measured at five locations using acoustic displacement sensors. Flow velocity was measured using an Acoustic-Doppler Velocimeter and calculated using the ANUGA inundation model. The measured bed shear stress at the dam break fluid tip for an initially dry, horizontal bed was close to twice that estimated using steady flow theory. The temporal variation of swash bed shear stress showed a large peak in landward directed stress at the uprush tip, followed by a rapid decay throughout the uprush flow interior. The peak seaward directed stress during the backwash phase was less than half that measured in the uprush. Close to the still water line, in the region of bore collapse and at the time of initial uprush, favourable pressure gradients were measured. In the lower swash region predominately weak adverse pressure gradients were measured

    Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone

    Get PDF
    A novel remote sensing methodology to determine the dominant infragravity mechanism in the inner surf and swash zone in the field is presented. Video observations of the breakpoint motion are correlated with the shoreline motion and inner surf zone water levels to determine the relationship between the time-varying breakpoint oscillations and the shoreline motion. The results of 13 field data sets collected from three different beaches indicate that, inside the surf zone, the dominance of bound wave or breakpoint forcing is strongly dependent on the surf zone width and the type of short wave breaking. Infragravity generation by bound wave release was stronger for conditions with relatively narrow surf zones and plunging waves; breakpoint forcing was dominant for wider surf zones and spilling breaker conditions

    New evidence of breakpoint forced long waves: laboratory, numerical, and field observations

    Get PDF
    Numerical modeling and analysis of laboratory and field data are combined to show new evidence of breakpoint forced long waves. The laboratory data and numerical modeling show that the breakpoint can oscillate at frequencies not directly linked to the wave group envelope for specific bichromatic wave groups. The breakpoint therefore oscillates at frequencies where incident bound long waves are not present, enabling direct identification of breakpoint forced waves. Spectral analysis and cross-shore wave propagation patterns indicate that the breakpoint forced waves occur at subharmonic wave groups frequencies, the repeat frequency of the short waves within the group, and at frequencies associated with triad interactions. The results indicate that in this case the long waves are generated by breakpoint forcing rather than by energy transfer during shoaling of the incident waves. The slowly varying shape of the short waves in the groups and wave merging at the breakpoint controls the modulation of the breakpoint in these cases. The spectral analysis is applied to two field data sets where the breakpoint oscillation, incident waves and shoreline oscillation were measured, and infragravity wave generation is again identified at discrete frequencies that are not present in the incident wave group envelope, with merging of waves at the breakpoint again evident. The magnitudes of the generated infragravity waves outside the surf zone are also dependent on the normalized surf zone width. Both sets of observations provide further evidence for the generation of infragravity waves by the breakpoint forcing mechanism in the field

    Morphological hysteresis in the evolution of beach profiles under sequences of wave climates - Part 1; observations

    Get PDF
    Novel series of experiments are presented that demonstrate morphological hysteresis in the evolution to equilibrium of beach profiles under sequences of different wave climates. The experiments were conducted in a wave flume at medium scale using both monochromatic and random waves, representing 2D conditions. Beach profiles were obtained with high spatial resolution at frequent intervals with a laser profiler, from which shoreline location, bar position and sediment transport rates were derived. Experiments were conducted for sequences of wave climates, where a sequence comprised of 6-13 sequential tests, each commencing with the beach profile from the preceding test. Each test was run until equilibrium conditions were obtained and had a constant wave height, increased or decreased relative to the preceding test. Cyclical conditions were also included, with erosive and accretive wave conditions of short durations alternating through multiple cycles, so that equilibrium conditions were not reached during a test. With a sequence of increasing wave heights, the relationship between the shoreline position and the bulk cross-shore sediment transport, at equilibrium, was non-monotonic, indicating a maximum in the landward sediment transport rate. For test series comprised of a sequence of increasing wave heights followed by a sequence of decreasing wave heights, morphological hysteresis was observed in the equilibrium shoreline position and bulk cross-shore sediment transport, such that shoreline recession, or offshore transport, continued in some instances after reductions in wave height. This is inconsistent with classical equilibritim type shoreline evolution models. However, when equilibrium conditions were not reached, in the cyclic sequences, no such morphological hysteresis was observed and a dynamic equilibrium is reached. The morphological hysteresis occurs because of the decay, stranding, or increased relative depth, of the breaker bar following a reduction in wave height, often in conjunction with a new breaker bar generated by further offshore transport in the inner surf zone. Similar sequences of morphological response are evident in field data and larger scale tests in the literature. Finally, it is shown that the morphological hysteresis can be explained using the classical equilibrium beach state model of Wright et al. (1985) by introducing the concept of a subsequent alternate active beach state, which may occur following a change in wave conditions

    Modelling tsunami inundation on coastlines with characteristic form

    Get PDF
    This paper provides an indication of the likely difference in tsunami amplification and dissipation between different characteristic coastal embayments, coastal entrances and estuaries. Numerical modeling is performed with the ANU/Geoscience Australia tsunami inundation model. Characteristic coastal morphology is represented by simpler generic morphological shapes which can be applied easily in the ANUGA model, such that key non-dimensional parameters (e.g. embayment depth/bay width) can be varied. Modeling is performed with a range of bay shapes, seabed gradient and different incident tsunami wave shapes and wave angles, including sine waves, solitary waves and leading depression Nwaves. The results show a complex pattern for both large and small embayments, with wave breaking an important control on the amplification of the wave between the 20m contour and the shore. For large embayments, the wave run-up can be amplified by a factor six in comparison to the amplitude at the model boundary. For small embayments, the amplification is dependent on the location of the ocean water line, or tidal stage

    Physical model study of beach profile evolution by sea level rise in the presence of seawalls

    Get PDF
    Persistent and accelerating sea level rise (SLR) may have a significant impact on the evolution of sandy coastlines this Century. The response of natural sandy beaches to SLR has been much discussed in the literature, however there is a lack of knowledge about the impact of SLR on engineered coasts. Laboratory experiments comprising over 320 h of testing were conducted in a 44 m (L) x 1.2 m (W) x 1.6 m (D) wave flume to investigate the influence of coastal armouring in the form of seawalls on coastal response to SLR. The study was designed to investigate the effects of contrasting types of seawalls (reflective-impermeable versus dissipative-permeable) on beach profile response to increased water levels, in the presence of both erosive and accretionary wave conditions. The results obtained showed that seawalls alter the evolution of the equilibrium profile with rising water level, causing increased lowering of the profile adjacent to the structure. Under erosive wave conditions, modelled profiles both with and without seawall structures in place were observed to translate landward in response to SLR and erode the upper profile. It was found that the erosion demand at the upper beach due to a rise in water level remains similar whether a structure is present or not, but that a seawall concentrates the erosion in the area adjacent to the seawall, resulting in enhanced and localised profile lowering. The type of structure present (dissipative-permeable versus reflective-impermeable) was not observed to have a significant influence on this response. Under accretive conditions, the preservation of a large shoreface and berm resulted in no wave-structure interaction occurring, with the result that the presence of a seawall had no impact on profile evolution. A potential two-step method for estimating the observed profile response to water level rise in the presence of seawalls is proposed, whereby a simple profile translation model is used to provide a first estimate of the erosion demand, and then this eroded volume is redistributed in front of the seawall out to the position of the offshore bar

    Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein

    Get PDF
    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length

    Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein.

    Get PDF
    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.This research was supported by Biotechnology and Biological Research Council Grants BB/J006459/1 (D.T.G. and J.C.), BB/J005029/1 (F.W. and J.R.P), BB/G019452/1 (O.E.F and D.J.B) and BB/G020671/1 (C.G.B. and J.R.P.). H.K.H.F. is supported by a studentship from a Wellcome Trust 4-year PhD programme (WT095024MA). C.M.J. is supported by the German Federal Ministry of Education and Research (BMBF), grant BIOSCAT (contract N° 05K12YE1). J.C. is a Wellcome Trust Senior Research Fellow (WT/095195). J.R.P holds a British Heart Foundation Senior Basic Science Fellowship (FS/12/36/29588). The authors acknowledge the use of EMBL SAXS beamline P12 at Petra-3 (DESY, Hamburg, Germany) and Maxim Petoukhov (EMBL) for providing a modified version of SASR EF. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement N°283570). The authors would like to thank Diamond Light Source for beamtime (proposal mx-7864) and Johan Turkenburg and Sam Hart for assistance with crystal testing and data collection.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms827
    • …
    corecore