research

Modelling tsunami inundation on coastlines with characteristic form

Abstract

This paper provides an indication of the likely difference in tsunami amplification and dissipation between different characteristic coastal embayments, coastal entrances and estuaries. Numerical modeling is performed with the ANU/Geoscience Australia tsunami inundation model. Characteristic coastal morphology is represented by simpler generic morphological shapes which can be applied easily in the ANUGA model, such that key non-dimensional parameters (e.g. embayment depth/bay width) can be varied. Modeling is performed with a range of bay shapes, seabed gradient and different incident tsunami wave shapes and wave angles, including sine waves, solitary waves and leading depression Nwaves. The results show a complex pattern for both large and small embayments, with wave breaking an important control on the amplification of the wave between the 20m contour and the shore. For large embayments, the wave run-up can be amplified by a factor six in comparison to the amplitude at the model boundary. For small embayments, the amplification is dependent on the location of the ocean water line, or tidal stage

    Similar works