2,514 research outputs found

    Neutron matter at low density and the unitary limit

    Get PDF
    Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum kFk_F between 0.4 and 0.8 fm−1^{-1}. It is found that the Equation of State is determined by the 1S0^1S_0 channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below kF=0.4k_F = 0.4 fm−1^{-1} does not indicate any pathological behavior of the neutron Equation of State.Comment: 17 pages, 7 figures. To be published in Phys. Rev.

    Nuclear matter hole spectral function in the Bethe-Brueckner-Goldstone approach

    Get PDF
    The hole spectral function is calculated in nuclear matter to assess the relevance of nucleon-nucleon short range correlations. The calculation is carried out within the Brueckner scheme of many-body theory by using several nucleon-nucleon realistic interactions. Results are compared with other approaches based on variational methods and transport theory. Discrepancies appear in the high energy region, which is sensitive to short range correlations, and are due to the different many-body treatment more than to the specific N-N interaction used. Another conclusion is that the momentum dependence of the G-matrix should be taken into account in any self consistent approach.Comment: 7 pages, 5 figure

    Spin-orbit correlation energy in neutron matter

    Full text link
    We study the relevance of the energy correlation produced by the two-body spin-orbit coupling present in realistic nucleon-nucleon potentials. To this purpose, the neutron matter Equation of State (EoS) is calculated with the realistic two-body Argonne v8′v_8' potential. The shift occuring in the EoS when spin-orbit terms are removed is taken as an estimate of the spin-orbit correlation energy. Results obtained within the Bethe-Brueckner-Goldstone expansion, extended up to three hole-line diagrams, are compared with other many-body calculations recently presented in the literature. In particular, excellent agreement is found with the Green's function Monte-Carlo method. This agreement indicates the present theoretical accuracy in the calculation of the neutron matter EoS.Comment: 5 pages, 2 figures, 2 tables; to appear in Phys. Rev.

    Hybrid protoneutron stars with the MIT bag model

    Get PDF
    We study the hadron-quark phase transition in the interior of protoneutron stars. For the hadronic sector, we use a microscopic equation of state involving nucleons and hyperons derived within the finite-temperature Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ the MIT bag model both with a constant and a density-dependent bag parameter. We calculate the structure of protostars with the equation of state comprising both phases and find maximum masses below 1.6 solar masses. Metastable heavy hybrid protostars are not found.Comment: 12 pages, 9 figures submitted to Phys. Rev.

    Remarks on the use of projected densities in the density dependent part of Skyrme or Gogny functionals

    Full text link
    I discuss the inadequacy of the "projected density" prescription to be used in density dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that at least for the restoration of spatial symmetries like rotations, translations or parity the above prescription yields catastrophic results for the energy that drive the intrinsic wave function to configurations with infinite deformation, preventing thereby its use both in projection after and before variation.Comment: To be published as a contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Structure of hybrid protoneutron stars within the Nambu--Jona-Lasinio model

    Get PDF
    We investigate the structure of protoneutron stars (PNS) formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS). For the hadronic matter, we use a finite temperature EOS based on the Brueckner-Bethe-Goldstone many-body theory, with realistic two- and three-body forces. For the quark sector, we employ the Nambu--Jona-Lasinio model. We find that the maximum allowed masses are comprised in a narrow range around 1.8 solar masses, with a slight dependence on the temperature. Metastable hybrid protoneutron stars are not found.Comment: 7 pages, 6 figures, revised version accepted for publication in Phys. Rev.

    Accurate nuclear masses from a three parameter Kohn-Sham DFT approach (BCPM)

    Full text link
    Given the promising features of the recently proposed Barcelona-Catania-Paris (BCP) functional \cite{Baldo.08}, it is the purpose of this paper to still improve on it. It is, for instance, shown that the number of open parameters can be reduced from 4-5 to 2-3, i.e. by practically a factor of two. One parameter is tightly fixed by a fine-tuning of the bulk, a second by the surface energy. The third is the strength of the spin-orbit potential on which the final result does not depend within the scatter of the values used in Skyrme and Gogny like functionals. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Waspra 2003 compilation. This rms value compares favorably with the one obtained using other successful mean field theories. Charge radii are also well reproduced when compared with experiment. The energies of some excited states, mostly the isoscalar giant monopole resonances, are studied within this model as well.Comment: 23 pages, 12 figure

    Octupole deformation properties of the Barcelona-Catania-Paris energy density functionals

    Full text link
    We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP) energy density functionals for two sets of isotopes, those of radium and barium, where it is believed that octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean field framework (Hartree- Fock- Bogoliubov approximation) by using the axially symmetric octupole moment as a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry spontaneously broken by the mean field and also incorporate octupole fluctuations around the ground state solution. For each isotope the energy of the lowest lying 1−1^{-}state and the B(E1)B(E1) and B(E3)B(E3) transition probabilities have been computed and compared to both the experimental data and the results obtained in the same framework with the Gogny D1S interaction, which are used here as a well established benchmark. Finally, the octupolarity of the configurations involved in the way down to fission of 240^{240}Pu, which is strongly connected to the asymmetric fragment mass distribution, is studied. We confirm with this thorough study the suitability of the BCP functionals to describe octupole related phenomena.Comment: 13 pages, 13 figure

    In medium T-matrix for nuclear matter with three-body forces - binding energy and single particle properties

    Full text link
    We present spectral calculations of nuclear matter properties including three-body forces. Within the in-medium T-matrix approach, implemented with the CD-Bonn and Nijmegen potentials plus the three-nucleon Urbana interaction, we compute the energy per particle in symmetric and neutron matter. The three-body forces are included via an effective density dependent two-body force in the in-medium T-matrix equations. After fine tuning the parameters of the three-body force to reproduce the phenomenological saturation point in symmetric nuclear matter, we calculate the incompressibility and the energy per particle in neutron matter. We find a soft equation of state in symmetric nuclear matter but a relatively large value of the symmetry energy. We study the the influence of the three-body forces on the single-particle properties. For symmetric matter the spectral function is broadened at all momenta and all densities, while an opposite effect is found for the case of neutrons only. Noticeable modification of the spectral functions are realized only for densities above the saturation density. The modifications of the self-energy and the effective mass are not very large and appear to be strongly suppressed above the Fermi momentum.Comment: 20 pages, 11 figure

    Relativistic Approach to Superfluidity in Nuclear Matter

    Get PDF
    Pairing correlations in symmetric nuclear matter are studied within a relativistic mean-field approximation based on a field theory of nucleons coupled to neutral (σ\sigma and ω\omega) and to charged (ϱ\varrho) mesons. The Hartree-Fock and the pairing fields are calculated in a self-consistent way. The energy gap is the result of a strong cancellation between the scalar and vector components of the pairing field. We find that the pair amplitude vanishes beyond a certain value of momentum of the paired nucleons. This fact determines an effective cutoff in the gap equation. The value of this cutoff gives an energy gap in agreement with the estimates of non relativistic calculations.Comment: 21 pages, REVTEX, 8 ps-figures, to appear in Phys.Rev.C. e-mail: [email protected]
    • …
    corecore