4,339 research outputs found

    Assessing and countering reaction attacks against post-quantum public-key cryptosystems based on QC-LDPC codes

    Full text link
    Code-based public-key cryptosystems based on QC-LDPC and QC-MDPC codes are promising post-quantum candidates to replace quantum vulnerable classical alternatives. However, a new type of attacks based on Bob's reactions have recently been introduced and appear to significantly reduce the length of the life of any keypair used in these systems. In this paper we estimate the complexity of all known reaction attacks against QC-LDPC and QC-MDPC code-based variants of the McEliece cryptosystem. We also show how the structure of the secret key and, in particular, the secret code rate affect the complexity of these attacks. It follows from our results that QC-LDPC code-based systems can indeed withstand reaction attacks, on condition that some specific decoding algorithms are used and the secret code has a sufficiently high rate.Comment: 21 pages, 2 figures, to be presented at CANS 201

    Compressed correlation functions and fast aging dynamics in metallic glasses

    Full text link
    We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, thus faster than exponential, correlation functions which can be modeled by the well-known Kohlrausch-Williams-Watts function with a shape exponent {\beta} larger than one. This parameter is furthermore found to be independent of both waiting time and wave-vector, leading to the possibility to rescale all the correlation functions to a single master curve. The dynamics in the glassy state is additionally characterized by different aging regimes which persist in the deep glassy state. These features seem to be universal in metallic glasses and suggest a non diffusive nature of the dynamics. This universality is supported by the possibility of describing the fast increase of the structural relaxation time with waiting time using a unique model function, independently of the microscopic details of the system.Comment: 7 pages, 4 figures. To be published in J. Chem. Phy

    Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes

    Full text link
    In this paper we study reaction and timing attacks against cryptosystems based on sparse parity-check codes, which encompass low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the feasibility of these attacks is not strictly associated to the quasi-cyclic (QC) structure of the code but is related to the intrinsically probabilistic decoding of any sparse parity-check code. So, these attacks not only work against QC codes, but can be generalized to broader classes of codes. We provide a novel algorithm that, in the case of a QC code, allows recovering a larger amount of information than that retrievable through existing attacks and we use this algorithm to characterize new side-channel information leakages. We devise a theoretical model for the decoder that describes and justifies our results. Numerical simulations are provided that confirm the effectiveness of our approach

    LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes

    Full text link
    This work presents a new code-based key encapsulation mechanism (KEM) called LEDAkem. It is built on the Niederreiter cryptosystem and relies on quasi-cyclic low-density parity-check codes as secret codes, providing high decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known statistical attacks, and takes advantage of a new decoding algorithm that provides faster decoding than the classical bit-flipping decoder commonly adopted in this kind of systems. The main attacks against LEDAkem are investigated, taking into account quantum speedups. Some instances of LEDAkem are designed to achieve different security levels against classical and quantum computers. Some performance figures obtained through an efficient C99 implementation of LEDAkem are provided.Comment: 21 pages, 3 table

    Comparative Evaluation of Packet Classification Algorithms for Implementation on Resource Constrained Systems

    Get PDF
    This paper provides a comparative evaluation of a number of known classification algorithms that have been considered for both software and hardware implementation. Differently from other sources, the comparison has been carried out on implementations based on the same principles and design choices. Performance measurements are obtained by feeding the implemented classifiers with various traffic traces in the same test scenario. The comparison also takes into account implementation feasibility of the considered algorithms in resource constrained systems (e.g. embedded processors on special purpose network platforms). In particular, the comparison focuses on achieving a good compromise between performance, memory usage, flexibility and code portability to different target platforms

    Hard - X-rays selected Active Galactic Nuclei. I. A radio view at high-frequencies

    Full text link
    A thorough study of radio emission in Active Galactic Nuclei (AGN) is of fundamental importance to understand the physical mechanisms responsible for the emission and the interplay between accretion and ejection processes. High frequency radio observations can target the nuclear contribution of smaller emitting regions and are less affected by absorption. We present JVLA 22 and 45 GHz observations of 16 nearby (0.003≀\lez≀\le0.3) hard - X-rays selected AGN at the (sub)-kpc scale with tens uJy beam−1^{-1} sensitivity. We detected 15/16 sources, with flux densities ranging from hundreds uJy beam−1^{-1} to tens Jy (specific luminosities from ∌\sim1020^{20} to ∌\sim1025 W Hz−1^{25}\,W\,Hz^{-1} at 22 GHz). All detected sources host a compact core, with 8 being core-dominated at either frequencies, the others exhibiting also extended structures. Spectral indices range from steep to flat/inverted. We interpret this evidence as either due to a core+jet system (6/15), a core accompanied by surrounding star formation (1/15), to a jet oriented close to the line of sight (3/15), to emission from a corona or the base of a jet (1/15), although there might be degeneracies between different processes. Four sources require more data to shed light on their nature. We conclude that, at these frequencies, extended, optically-thin components are present together with the flat-spectrum core. The LR/LX∌10−5{L_R}/{L_X}\sim10^{-5} relation is roughly followed, indicating a possible contribution to radio emission from a hot corona. A weakly significant correlation between radio core (22 and 45 GHz) and X-rays luminosities is discussed in the light of an accretion-ejection framework.Comment: Accepted for publication on MNRA

    Causes of hospitalization among extra-European Union children in a large hospital of Northern Italy, in a five-year observation period

    Get PDF
    The hospitalizations of 1,239 patients aged 14 years or less and immigrated from extra-European Union countries in Italy were assessed in the 6-year period, from 1999 to 2004. The main demographic and clinical features were analyzed according to several variables, also distiguishing patients aged less than one year, from those aged 1-14 years. The introduction of a deed of indemnity law in 2001 profoundly changed the pattern of admissions and health care needs and exploitation during subsequent years, leading to a massive regularization of clandestine immigrants

    Evaluation of Removed and Recycled Mineral Nutrients in Italian Commercial Persimmon Orchards

    Get PDF
    Persimmon is a typical fruit crop of the Mediterranean region and, since it is considered a minor species, little information is available on its nutrients need. In the present experiment, it was estimated the quantity of removed and recycled nutrients by Kaki Tipo and Rojo Brillante, the two main varieties of persimmon grown in Emilia-Romagna region (Po Valley, Italy). Plants from ten mature orchards were selected and harvested; organs (leaves in summer, fruits at harvest, abscissed leaves, roots and skeleton) biomass and mineral composition were determined. The yearly uptake of macronutrients was similar for the 2 varieties, accounting for (kg/ ha): N 89-91, P 10-11, K 79-91, Ca 132-162, Mg 22-26 and S 9. While K was mostly found in fruits, Ca and Mg were mainly partitioned to leaves. Among micronutrients, Mn and Fe showed the highest values (1.1–1.3 and 1.2–2.1 kg/ha, respectively), followed by B (370 g/ha), while Cu and Zn showed the smallest amounts (less 100 g/ha). Nitrogen, Ca, Mg and S were those more recycled than removed, while K showed an opposite trend; among the microelements, the annual recycled fractions of B and Mn were higher than that removed
    • 

    corecore