280 research outputs found

    Weak Lensing Light-Cones in Modified Gravity simulations with and without Massive Neutrinos

    Get PDF
    We present a novel suite of cosmological N-body simulations called the DUSTGRAIN-pathfinder, implementing simultaneously the effects of an extension to General Relativity in the form of f(R)f(R) gravity and of a non-negligible fraction of massive neutrinos. We describe the generation of simulated weak lensing and cluster counts observables within a past light-cone extracted from these simulations. The simulations have been performed by means of a combination of the MG-GADGET code and a particle-based implementation of massive neutrinos, while the light-cones have been generated using the MapSim pipeline allowing us to compute weak lensing maps through a ray-tracing algorithm for different values of the source plane redshift. The mock observables extracted from our simulations will be employed for a series of papers focussed on understanding and possibly breaking the well-known observational degeneracy between f(R)f(R) gravity and massive neutrinos, i.e. the fact that some specific combinations of the characteristic parameters for these two phenomena (the fR0f_{R0} scalar amplitude and the total neutrino mass Σmν\Sigma m_{\nu}) may result indistinguishable from the standard ΛCDM\mathrm{\Lambda CDM} cosmology through several standard observational probes. In particular, in the present work we show how a tomographic approach to weak lensing statistics could allow - especially for the next generation of wide-field surveys - to disentangle some of the models that appear statistically indistinguishable through standard single-redshift weak lensing probe.Comment: accepted for publication in MNRAS, added theoretical comparisons to the simulation measurement

    Characterizing dark interactions with the halo mass accretion history and structural properties

    Full text link
    We study the halo mass accretion history (MAH) and its correlation with the internal structural properties in coupled dark energy cosmologies (cDE). To accurately predict all the non-linear effects caused by dark interactions, we use the COupled Dark Energy Cosmological Simulations (CoDECS). We measure the halo concentration at z=0 and the number of substructures above a mass resolution threshold for each halo. Tracing the halo merging history trees back in time, following the mass of the main halo, we develope a MAH model that accurately reproduces the halo growth in term of M_{200} in the {\Lambda}CDM Universe; we then compare the MAH in different cosmological scenarios. For cDE models with a weak constant coupling, our MAH model can reproduce the simulation results, within 10% of accuracy, by suitably rescaling the normalization of the linear matter power spectrum at z=0, {\sigma}_8. However, this is not the case for more complex scenarios, like the "bouncing" cDE model, for which the numerical analysis shows a rapid growth of haloes at high redshifts, that cannot be reproduced by simply rescaling the value of {\sigma}_8. Moreover, at fixed value of {\sigma}_8, cold dark matter (CDM) haloes in these cDE scenarios tend to be more concentrated and have a larger amount of substructures with respect to {\Lambda}CDM predictions. Finally, we present an accurate model that relates the halo concentration to the time at which it assembles half or 4% of its mass. Combining this with our MAH model, we show how halo concentrations change while varying only {\sigma}_8 in a {\Lambda}CDM Universe, at fixed halo mass.Comment: 18 pages, 14 figures, accepted for publication in MNRA

    Weak Lensing Peaks in Simulated Light-Cones: Investigating the Coupling between Dark Matter and Dark Energy

    Get PDF
    In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20%20\% with respect to the reference Λ\mathrm{\Lambda}CDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z≤\leq0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.Comment: accepted in MNRAS, figures improved and text update

    The mass accretion rate of galaxy clusters: a measurable quantity

    Get PDF
    We explore the possibility of measuring the mass accretion rate (MAR) of galaxy clusters from their mass profiles beyond the virial radius R200R_{200}. We derive the accretion rate from the mass of a spherical shell whose inner radius is 2R2002R_{200}, whose thickness changes with redshift, and whose infall velocity is assumed to be equal to the mean infall velocity of the spherical shells of dark matter halos extracted from NN-body simulations. This approximation is rather crude in hierarchical clustering scenarios where both smooth accretion and aggregation of smaller dark matter halos contribute to the mass accretion of clusters.Nevertheless, in the redshift range z=[0,2]z=[0,2], our prescription returns an average MAR within 20−40%20-40 \% of the average rate derived from the merger trees of dark matter halos extracted from NN-body simulations. The MAR of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real universe. Since the measurement of the mass profile of clusters beyond their virial radius can be performed with the caustic technique applied to dense redshift surveys of the cluster outer regions, our result suggests that measuring the mean MAR of a sample of galaxy clusters is actually feasible. We thus provide a new potential observational test of the cosmological and structure formation models.Comment: 11 pages, 7 figures, 5 tables, minor text modifications to match the published version, typos correcte

    Disentangling dark sector models using weak lensing statistics

    Get PDF
    We perform multi-plane ray-tracing using the GLAMER gravitational lensing code within high-resolution light-cones extracted from the CoDECS simulations: a suite of cosmological runs featuring a coupling between Dark Energy and Cold Dark Matter. We show that the presence of the coupling is evident not only in the redshift evolution of the normalisation of the convergence power spectrum, but also in differences in non-linear structure formation with respect to {\Lambda}CDM. Using a tomographic approach under the assumption of a {\Lambda}CDM cosmology, we demonstrate that weak lensing measurements would result in a {\sigma}8 value that changes with the source redshift if the true underlying cosmology is a coupled Dark Energy one. This provides a generic null test for these types of models. We also find that different models of coupled Dark Energy can show either an enhanced or a suppressed correlation between convergence maps with differing source redshifts as compared to {\Lambda}CDM. This would provide a direct way to discriminate between different possible realisations of the coupled Dark Energy scenario. Finally, we discuss the impact of the coupling on several lensing observables for different source redshifts and angular scales with realistic source redshift distributions for current ground-based and future space-based lensing surveys.Comment: 17 pag. and 14 fig. replaced to match the accepted version (increased the number of light-cone realisations

    The stellar-to-halo mass relation over the past 12 Gyr

    Get PDF
    Understanding how galaxy properties are linked to the dark matter halos they reside in, and how they co-evolve is a powerful tool to constrain the processes related to galaxy formation. The stellar-to-halo mass relation (SHMR) and its evolution over the history of the Universe provides insights on galaxy formation models and allows to assign galaxy masses to halos in N-body dark matter simulations. We use a statistical approach to link the observed galaxy stellar mass functions on the COSMOS field to dark matter halo mass functions from the DUSTGRAIN simulation and from a theoretical parametrization from z=0 to z=4. We also propose an empirical model to describe the evolution of the stellar-to-halo mass relation as a function of redshift. We calculate the star-formation efficiency (SFE) of galaxies and compare results with previous works and semi-analytical models.Comment: accepted for publication in A&A, matching version in pres

    Comparative Effectiveness of DPP-4 Inhibitors Versus Sulfonylurea for the Treatment of Type 2 Diabetes in Routine Clinical Practice: A Retrospective Multicenter Real-World Study

    Get PDF
    Introduction: DPP-4 inhibitors (DPP4i) and sulfonylureas are popular second-line therapies for type 2 diabetes (T2D), but there is a paucity of real-world studies comparing their effectiveness in routine clinical practice. Methods: This was a multicenter retrospective study on diabetes outpatient clinics comparing the effectiveness of DPP4i versus gliclazide extended release. The primary endpoint was change from baseline in HbA1c. Secondary endpoints were changes in fasting plasma glucose, body weight, and systolic blood pressure. Automated software extracted data from the same clinical electronic chart system at all centers. Propensity score matching (PSM) was used to generate comparable cohorts to perform outcome analysis. Results: We included data on 2410 patients starting DPP4i and 1590 patients starting gliclazide (mainly 30–60 mg/day). At baseline, the two groups differed in disease duration, body weight, blood pressure, HbA1c, fasting glucose, HDL cholesterol, triglycerides, liver enzymes, eGFR, prevalence of microangiopathy, and use of metformin. Among DPP4i molecules, no difference in glycemic effectiveness was detected. In matched cohorts (n = 1316/group), patients starting DPP4i, as compared with patients starting gliclazide, experienced greater reductions in HbA1c (− 0.6% versus − 0.4%; p < 0.001), fasting glucose (− 14.1 mg/dl versus − 8.8 mg/dl; p = 0.007), and body weight (− 0.4 kg versus − 0.1 kg; p = 0.006) after an average 6 months follow-up. DPP4i improved glucose control more than gliclazide, especially in patients who had failed with other glucose-lowering medications or were on basal insulin. Conclusions: This large retrospective real-world study shows that, in routine clinical practice, starting a DPP4i allows better glycemic control than starting low-dose gliclazide. Funding: The Italian Diabetes Society, with external support from AstraZeneca
    • …
    corecore