36 research outputs found

    Sulfate attack - Reaction mechanisms revealed by a multi proxy approach

    Get PDF
    The destructive effects of sulfate attack on concrete structures are well known, but the reaction paths and mechanisms that cause the deterioration are still under debate. The aim of this study is to contribute to a deeper understanding on investigating concrete damage by introducing a novel and promising multi proxy approach method. The methodology comprises advanced mineralogical and hydro-geochemical methods as well as stable isotope signals. Investigations were performed on various field case studies in Austria, where the locally occurring ground water was classified as slightly aggressive to concrete, in accordance to DIN EN 206-1. Nevertheless intense concrete damage related to sulfate attack was found. Severely damaged mushy concrete consisted mainly of thaumasite, secondary calcite, gypsum and relicts of aggregate. The expressed interstitial solutions from such material were extremely enriched in SO4 (up to >30000 mg L-1). Stable hydrogen and oxygen isotope were applied successfully and demonstrated that the degree of evaporation provoked enrichments in SO4 and other dissolved, potentially harmful ions such as Cl. Furthermore, the enormous accumulation of incompatible trace elements (e.g. Rb and Li) clearly indicated that numerous wetting and drying cycles had occurred. Such a highly dynamic system is known to induce severe destructive effects on concrete. In this study we demonstrate that the application of a multi proxy approach can provide a better understanding of the complexity of reaction mechanisms involving sulfate attack on concrete structures. More detailed knowledge on the individual reactions that promote concrete damage in field structures will help to find specific counter measures for already affected buildings and to develop tailored concrete recipes, applications and constructive measures for future projects

    Synthesis of Zeolites from Fine-Grained Perlite and Their Application as Sorbents

    Get PDF
    The hydrothermal alteration of perlite into zeolites was studied using a two-step approach. Firstly, perlite powder was transformed into Na-P1 (GIS) or hydro(xy)sodalite (SOD) zeolites at 100 °C and 24 h using 2 or 5 M NaOH solutions. Secondly, the Si:Al molar ratio of the reacted Si-rich solution was adjusted to 1 by Na-aluminate addition to produce zeolite A (LTA) at 65 or 95 °C and 6 or 24 h at an efficiency of 90 ± 9% for Al and 93 ± 6% for Si conversion. The performance of these zeolites for metal ion removal and water softening applications was assessed by sorption experiments using an artificial waste solution containing 4 mmol/L of metal ions (Me(2+): Ca(2+), Mg(2+), Ba(2+) and Zn(2+)) and local tap water (2.1 mmol/L Ca(2+) and 0.6 mmol/L Mg(2+)) at 25 °C. The removal capacity of the LTA-zeolite ranged from 2.69 to 2.86 mmol/g for Me(2+) (=240–275 mg/g), which is similar to commercial zeolite A (2.73 mmol/g) and GIS-zeolite (2.69 mmol/g), and significantly higher compared to the perlite powder (0.56 mmol/g) and SOD-zeolite (0.88 mmol/g). The best-performing LTA-zeolite removed 99.8% Ca(2+) and 93.4% Mg(2+) from tap water. Our results demonstrate the applicability of the LTA-zeolites from perlite for water treatment and softening applications

    Impact of green clay authigenesis on element sequestration in marine settings

    Get PDF
    Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report sub- stantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm−²·kyr−1 for K, Mg and Al, 16 ± 9 mmol·cm −²·kyr−1 for Si and 6 ± 3 mmol·cm−²·kyr−1 for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0–200 m) environments predicts a present-day global uptake of ~≤ 0.1 Tmol·yr−1 of K, Mg and Al, and ~0.1–0.4 Tmol·yr−1 of Fe and Si, which is ~half of the estimated Mesozoic elemental flux. Clay mineral authigenesis had a large impact on the global marine element cycles throughout Earth’s history, in particular during ‘greenhouse’ periods with sea level highstand, and is key for better understanding past and present geochemical cycling in marine sediments

    Stable and radiogenic strontium isotope fractionation during hydrothermal seawater-basalt interaction

    Get PDF
    The fluid-rock interactions occurring in hydrothermal systems at or near mid-oceanic ridges (MOR) were studied experimentally by reacting crystalline and glassy basalt with seawater at 250 °C and 290 °C while monitoring the liquid phase Sr isotopic evolution (87Sr/86Sr and δ88/86Sr). The results indicate that seawater Sr was incorporated into anhydrite during the early stages of seawater-basalt interaction. Liquid 87Sr/86Sr values trend towards the basaltic signature as non-stoichiometric basalt dissolution became the dominant process. This suggests that the interplay between fast Sr incorporation into secondary sulfates versus slow and continuous Sr liberation due to basalt dissolution at intermediate temperatures could partly explain previously identified discrepancies between MOR heat budget constraints and the marine 87Sr/86Sr budget. Late-stage anhydrite re-dissolution, likely caused by the liquid phase becoming more reducing through further basalt dissolution, as well as by quenching of the experiments, represents a potential explanation for the low amounts of anhydrite found in naturally altered oceanic basalt samples. Relatively strong decreases in liquid δ88/86Sr values in experiments with crystalline basalt suggest that isotopically light Sr was preferentially released due to non-stoichiometric dissolution. A slight preference of anhydrite for isotopically heavy Sr (‰εAnhydrite-Liquid88/86=0.034±0.019‰) is indicated by the data, suggesting that changes in MOR spreading rates and Sr removal could be recorded in the isotope compositions of authigenic, sedimentary Sr phases. Such insights will help to constrain the influence of hydrothermal systems on the oceanic stable Sr cycle

    Revisiting Glauconite Geochronology: Lessons Learned from In Situ Radiometric Dating of a Glauconite-Rich Cretaceous Shelfal Sequence

    Get PDF
    The scarcity of well-preserved and directly dateable sedimentary sequences is a major impediment to inferring the Earth’s paleo-environmental evolution. The authigenic mineral glauconite can potentially provide absolute stratigraphic ages for sedimentary sequences and constraints on paleo-depositional conditions. This requires improved approaches for measuring and interpreting glauconite formation ages. Here, glauconite from a Cretaceous shelfal sequence (Langenstein, northern Germany) was characterized using petrographical, geochemical (EMP), andmineralogical (XRD) screening methods before in situ Rb-Sr dating via LA-ICP-MS/MS. The obtained glauconite ages (~101 to 97 Ma) partly overlap with the depositional age of the Langenstein sequence (±3 Ma), but without the expected stratigraphic age progression, which we attribute to detrital and diagenetic illitic phase impurities inside the glauconites. Using a novel age deconvolution approach, which combines the new Rb-Sr dataset with published K-Ar ages, we recalculate the glauconite bulk ages to obtain stratigraphically significant ‘pure’ glauconite ages (~100 to 96 Ma). Thus, our results show that pristine ages can be preserved in mineralogically complex glauconite grains even under burial diagenetic conditions (T < 65 ◦C; <1500 m depth), confirming that glauconite could be a suitable archive for paleo-environmental reconstructions and direct sediment dating.Esther Scheiblhofer, Ulrike Moser, Stefan Löhr, Markus Wilmsen, Juraj Farkaš, Daniela Gallhofer, Alice Matsdotter Bäckström, Thomas Zack, and Andre Balderman

    Fracture dolomite as an archive of continental palaeo-environmental conditions

    Get PDF
    The origin of Quaternary dolomites in continental environments (e.g. karst and lakes) is barely constrained compared to marine dolomites in sedimentary records. Here we present a study of dolomite and aragonite formations infilling young fractures of the ‘Erzberg’ iron ore deposit, Austria, under continental-meteoric and low temperature conditions. Two dolomite generations formed shortly after the Last Glacial Maximum (~20 kyr BP): dolomite spheroids and matrix dolomite. Clumped isotope measurements and U/Th disequilibrium ages reveal formation temperatures of 0–3 °C (±6 °C) and 3–20 °C (±5 °C) for the both dolomite types, and depositional ages around 19.21 ± 0.10 kyr BP and 13.97 ± 0.08 kyr BP or younger, respectively. Meteoric solution and carbonate isotope compositions (δ18O, δ13C and 87Sr/86Sr) indicate the dolomites formed via aragonite and high-Mg calcite precursors from CO2-degassed, Mg-rich solutions. Our study introduces low temperature dolomite formations and their application as a sedimentary-chemical archive.ISSN:2662-443

    Removal of Barium, Cobalt, Strontium, and Zinc from Solution by Natural and Synthetic Allophane Adsorbents

    No full text
    The capacity and mechanism of the adsorption of aqueous barium (Ba), cobalt (Co), strontium (Sr), and zinc (Zn) by Ecuadorian (NatAllo) and synthetic (SynAllo-1 and SynAllo-2) allophanes were studied as a function of contact time, pH, and metal ion concentration using kinetic and equilibrium experiments. The mineralogy, nano-structure, and chemical composition of the allophanes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and specific surface area analyses. The evolution of adsorption fitted to a pseudo-first-order reaction kinetics, where equilibrium between aqueous metal ions and allophane was reached within &lt;10 min. The metal ion removal efficiencies varied from 0.7 to 99.7% at pH 4.0 to 8.5. At equilibrium, the adsorption behavior is better described by the Langmuir model than by the Dubinin–Radushkevich model, yielding sorption capacities of 10.6, 17.2, and 38.6 mg/g for Ba 2 + , 12.4, 19.3, and 29.0 mg/g for HCoO 2 − ; 7.2, 15.9, and 34.4 mg/g for Sr 2 + ; and 20.9, 26.9, and 36.9 mg/g for Zn 2 + , by NatAllo, SynAllo-2, and SynAllo-1, respectively. The uptake mechanism is based on a physical adsorption process rather than chemical ion exchange. Allophane holds great potential to effectively remove aqueous metal ions over a wide pH range and could be used instead of other commercially available sorbent materials such as zeolites, montmorillonite, carbonates, and phosphates for special wastewater treatment applications
    corecore