29 research outputs found

    Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Get PDF
    We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT) and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row) and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM), using the nonequilibrium version of the IEF-PCM model

    Affordable dye sensitizer by waste

    Get PDF
    Abstract The development of dye sensitizer is growing in line with the increasing demand for renewable energy. A research to obtain a dye sensitizer that is economical, safe, and produces a great value of DSSC efficiency is a challenge unresolved. On the other hand, the efforts for waste reduction are also intensively conducted to create better environment. In this paper, the variation of synthetic dye wastes from batik industries have been successfully applied as dye sensitizer and fabricated on DSSC cells. Congo red (1.0133%) yielded higher efficiency than rhodamine B (0.0126%), methyl orange (0.7560%), and naphthol blue black (0.0083%). The divergence of the efficiency of DSSC is very dependent upon the chromophore group owned by dye. This study has proven that the more chromophore group possessed by dye, the higher the efficiency of DSSC generated. This research concludes that the dye wastes have a bright future to be implemented as dye sensitizer on solar cells

    What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(I) complex in a dye-sensitized solar cell

    Get PDF
    AbstractThe synthesis of a 4,4′-bis(2-thienyl-5-carboxylic acid) functionalised 2,2′-bipyridine ligand and corresponding copper(I) complex is described and its application in a dye-sensitized solar cell (DSSC) is studied. The positioning of the thiophene groups appears favourable from DFT analysis and a best efficiency of 1.41% was obtained with this dye, for a 0.3 cm2 cell area DSSC. Two absorbance bands are observed in the electronic absorption spectrum of the copper(I) complex at 316 nm and 506 nm, with ε values of 50,000 M−1 cm−1 and 9030 M−1 cm−1, respectively. Cyclic voltammetry and electrochemical impedance spectroscopy are also used to provide a detailed analysis of the dye and assess its functionality in a DSSC

    Effect on Microstructure and Nanoindentation of a AlCoFeMoNi High Entropy Alloy

    No full text
    In this work, elemental powders supplied by Alfa Aesar with purity higher than 99.5% in weight Al, Co, Fe, Mo and Ni were initially weighed and mixed. The MA was performed in a high-energy ball mill (SPEX-8000M) for 10 h periods, under an argon atmosphere. Methanol was used as a process control agent to avid metal agglomeration. The milled powders were melting by electric arc furnacean argon atmosphere to prevent oxidation. The ingots were remelted at least 5 times to improve chemical homogeneit

    Hybrid Cements with ZnO Additions: Hydration, Compressive Strength and Microstructure

    No full text
    The effect of ZnO has already been studied for Portland cement, but the study of its impact on hybrid pastes is scarce. Thus, in this investigation, the influence of ZnO addition on hydration, compressive strength, microstructure, and structure of hybrid pastes is presented. The analyses were made by setting time tests, compressive strength tests, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis with differential scanning calorimetry, and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The results indicate that the setting time of the cements was delayed up to 39 min with additions of 3 wt% ZnO. Alternatively, the higher values of compressive strength were observed when 0.5 wt% ZnO was added to the cements for all curing days. In addition, no important differences in the microstructure of samples with different additions of ZnO were observed after 28 days of curing. It is expected that the use of ZnO contributes to the delay of the setting time and the increase of the compressive strength without negatively modifying the microstructure of hybrid pastes

    Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    No full text
    In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed
    corecore