368 research outputs found

    Ethical Issues in U.S. Trademark Prosecution and TTAB Practice, 10 J. Marshall Rev. Intell. Prop. L. 365 (2011)

    Get PDF
    The conduct of practitioners and agents before the U.S. Patent and Trademark Office (“USPTO” or “Office”) is subject to regulation by the Office under 35 U.S.C. § 2(b)(2)(D). This provision grants the Under Secretary of Commerce for Intellectual Property and the Director of the USPTO the authority to establish regulations to govern the conduct of agents, attorneys, or other representatives before the Office, including establishing disciplinary measures for non-compliance with those regulations. The USPTO regulations governing conduct include the Patent and Trademark Office Code of Professional Responsibility. This article summarizes the key canons and disciplinary rules applicable to trademark practitioners and authorized representatives; outlines common ethical issues for practitioners and other authorized representatives that arise in ex parte and inter partes trademark proceedings before the USPTO. This article also discusses the case law that has developed relating to these issues. Although the practice of law is generally regulated by State ethics rules and regulations, trademark practitioners and authorized representatives should be equally familiar with the separate set of USPTO regulations governing their conduct before the Office. Additionally, although the USPTO canons and disciplinary rules are based on the Model Code of Professional Responsibility of the American Bar Association (like some State ethics codes), there are a number of ethical issues unique to the conduct of trademark practitioners and agents before the Office. Failure to adhere to these unique rules and regulations can result in disciplinary action by the USPTO that compounds or even exceeds any disciplinary action by the State

    Wortstellungstypen des Deutschen und Kontrastierung

    Get PDF

    Probing the Interaction of the Diarylquinoline TMC207 with Its Target Mycobacterial ATP Synthase

    Get PDF
    Infections with Mycobacterium tuberculosis are substantially increasing on a worldwide scale and new antibiotics are urgently needed to combat concomitantly emerging drug-resistant mycobacterial strains. The diarylquinoline TMC207 is a highly promising drug candidate for treatment of tuberculosis. This compound kills M. tuberculosis by binding to a new target, mycobacterial ATP synthase. In this study we used biochemical assays and binding studies to characterize the interaction between TMC207 and ATP synthase. We show that TMC207 acts independent of the proton motive force and does not compete with protons for a common binding site. The drug is active on mycobacterial ATP synthesis at neutral and acidic pH with no significant change in affinity between pH 5.25 and pH 7.5, indicating that the protonated form of TMC207 is the active drug entity. The interaction of TMC207 with ATP synthase can be explained by a one-site binding mechanism, the drug molecule thus binds to a defined binding site on ATP synthase. TMC207 affinity for its target decreases with increasing ionic strength, suggesting that electrostatic forces play a significant role in drug binding. Our results are consistent with previous docking studies and provide experimental support for a predicted function of TMC207 in mimicking key residues in the proton transfer chain and blocking rotary movement of subunit c during catalysis. Furthermore, the high affinity of TMC207 at low proton motive force and low pH values may in part explain the exceptional ability of this compound to efficiently kill mycobacteria in different microenvironments

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration
    corecore