360 research outputs found

    Magnetic Resonance Imaging of Water Concentration in Low Moisture Content Wood

    Get PDF
    A new magnetic resonance imaging (MRI) technique, termed SPRITE (Single Point Ramped Imaging with T1 Enhancement) permits visualization of water content in previously inaccessible wood fiber systems. We demonstrate the superiority of SPRITE methods, in comparison to conventional MRI methods, for studying fluid content in low water content wood materials. SPRITE and conventional MRI images were acquired from four species of wood, equilibrated at multiple moisture content levels. Both methods were also used to examine relative moisture content during forced drying of a white ash wood sample

    Using phase interference to characterize dynamic propertiesā€”a review of constant gradient, portable magnetic resonance methods

    Get PDF
    Spatially resolved motion-sensitized magnetic resonance (MR) is a powerful tool for studying the dynamic properties of materials. Traditional methods involve using large, expensive equipment to create images of sample displacement by measuring the spatially resolved MR signal response to time-varying magnetic field gradients. In these systems, both the sample and the stress applicator are typically positioned inside a magnet bore. Portable MR instruments with constant gradients are more accessible, with fewer limitations on sample size, and they can be used in industrial settings to study samples under deformation or flow. We propose a view in which the well-controlled sensitive region of a magnet array acts as an integrator, with the velocity distribution leading to phase interference in the detected signal, which encodes information on the sampleā€™s dynamic properties. For example, in laminar flows of Newtonian and non-Newtonian fluids, the velocity distribution can be determined analytically and used to extract the fluidā€™s dynamic properties from the MR signal magnitude and/or phase. This review covers general procedures, practical considerations, and examples of applications in dynamic mechanical analysis and fluid rheology (viscoelastic deformation, laminar pipe flows, and Couette flows). Given that these techniques are relatively uncommon in the broader magnetic resonance community, this review is intended for both advanced NMR users and a more general physics/engineering audience interested in rheological applications of NMR

    Exponential Capillary Pressure Functions in Sedimentary Rocks

    Get PDF
    The Brooks-Corey power-law capillary pressure model is commonly imposed on core analysis data without verifying the validity of its underlying assumptions. The Brooks-Corey model, originally developed to model the pressure head during the drainage of soil, is only valid at low wetting phase saturations. However, such models are often applied in petroleum production simulations and may lead to erroneous recovery factors when the saturation range of interest is far from the end points. We demonstrate that exponential models work much better for capillary pressure compared to the Brooks-Corey model over a wide saturation range. Mercury injection porosimetry, petrographic image analysis, and magnetic resonance studies suggest that the pore and throat size distribution in many rocks are log-normally distributed. This fact was previously employed to calculate the capillary pressure function as a function of saturation for pore size distributions described by atruncated log-normal distribution. Employing a Taylor series expansion, we simplify the random fractal capillary pressure model of Hunt to Pc = exp(a āˆ’ bS), where S is the wetting phase saturation, and a and b characteristic of the porous medium. An extensive dataset of seventeen centrifuge capillary pressure measurements were used in this research to demonstrate the merit of the new method. For both sandstones and carbonates, the logarithm of capillary pressure showed a linear relationship with saturation as observed by magnetic resonance imaging centrifuge capillary pressure measurements over a wide saturation range. This work demonstrates that: (a) in semi-log plots of capillary pressure as a function of saturation, capillary pressurewill vary linearly over a wide saturation range, (b) such a plot as described in (a) will show the uni-or bimodal pore size distribution of the rock, (c) the exponential capillary pressure function simpliļ¬es analytical modelsthat use the capillary pressure function, for example oil recovery models for fractured reservoirs

    Monitoring gas hydrate formation with magnetic resonance imaging in a metallic core holder

    Get PDF
    Methane hydrate deposits world-wide are promising sources of natural gas. Magnetic Resonance Imaging (MRI) has proven useful in previous studies of hydrate formation. In the present work, methane hydrate formation in a water saturated sand pack was investigated employing an MRI-compatible metallic core holder at low magnetic ļ¬eld with a suite of advanced MRI methods developed at the UNB MRI Centre. The new MRI methods are intended to permit observation and quantiļ¬cation of residual ļ¬‚uids in the pore space as hydrate forms. Hydrate formation occurred in the water-saturated sand at 1500 psi and 4 Ā°C. The core holder has a maximum working pressure of 4000 psi between -28 and 80 Ā°C. The heat-exchange jacket enclosing the core holder enabled very precise control of the sample temperature. A pure phase encode MRI technique, SPRITE, and a bulk T1-T2 MR method provided high quality measurements of pore ļ¬‚uid saturation. Rapid 1D SPRITE MRI measurements time resolved the disappearance of pore water and hence the growth of hydrate in the sand pack. 3D Ļ€-EPI images conļ¬rmed that the residual water was inhomogeneously distributed along the sand pack. Bulk T1-T2 measurements discriminated residual water from the pore gas during the hydrate formation. A recently published local T1-T2 method helped discriminate bulk gas from the residual ļ¬‚uids in the sample. Hydrate formation commenced within two hours of gas supply. Hydrate formed throughout the sand pack, but maximum hydrate was observed at the interface between the gas pressure head and the sand pack. This irregular pattern of hydrate formation became more uniform over 24 hours. The rate of hydrate formation was greatest in the ļ¬rst two hours of reaction. An SE-SPI T2 map showed the T2 distribution changed considerably in space and time as hydrate formation continued. Changes in the T2 distribution are interpreted as pore level changes in residual water content and environment

    Genome-wide Characterization of Shared and Distinct Genetic Components that Influence Blood Lipid Levels in Ethnically Diverse Human Populations

    Get PDF
    Blood lipid concentrations are heritable risk factors associated with atherosclerosis and cardiovascular diseases. Lipid traits exhibit considerable variation among populations of distinct ancestral origin as well as between individuals within a population. We performed association analyses to identify genetic loci influencing lipid concentrations in African American and Hispanic American women in the Womenā€™s Health Initiative SNP Health Association Resource. We validated one African-specific high-density lipoprotein cholesterol locus at CD36 as well as 14 known lipid loci that have been previously implicated in studies of European populations. Moreover, we demonstrate striking similarities in genetic architecture (loci influencing the trait, direction and magnitude of genetic effects, and proportions of phenotypic variation explained) of lipid traits across populations. In particular, we found that a disproportionate fraction of lipid variation in African Americans and Hispanic Americans can be attributed to genomic loci exhibiting statistical evidence of association in Europeans, even though the precise genes and variants remain unknown. At the same time, we found substantial allelic heterogeneity within shared loci, characterized both by population-specific rare variants and variants shared among multiple populations that occur at disparate frequencies. The allelic heterogeneity emphasizes the importance of including diverse populations in future genetic association studies of complex traits such as lipids; furthermore, the overlap in lipid loci across populations of diverse ancestral origin argues that additional knowledge can be gleaned from multiple populations

    Generalization of adiposity genetic loci to US Hispanic women

    Get PDF
    BACKGROUND: Obesity is a public health concern. Yet the identification of adiposity-related genetic variants among United States (US) Hispanics, which is the largest US minority group, remains largely unknown. OBJECTIVE: To interrogate an a priori list of 47 (32 overall body mass and 15 central adiposity) index single-nucleotide polymorphisms (SNPs) previously studied in individuals of European descent among 3494 US Hispanic women in the Women's Health Initiative SNP Health Association Resource (WHI SHARe). DESIGN: Cross-sectional analysis of measured body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) were inverse normally transformed after adjusting for age, smoking, center and global ancestry. WC and WHR models were also adjusted for BMI. Genotyping was performed using the Affymetrix 6.0 array. In the absence of an a priori selected SNP, a proxy was selected (r2ā©¾0.8 in CEU). RESULTS: Six BMI loci (TMEM18, NUDT3/HMGA1, FAIM2, FTO, MC4R and KCTD15) and two WC/WHR loci (VEGFA and ITPR2-SSPN) were nominally significant (P<0.05) at the index or proxy SNP in the corresponding BMI and WC/WHR models. To account for distinct linkage disequilibrium patterns in Hispanics and further assess generalization of genetic effects at each locus, we interrogated the evidence for association at the 47 surrounding loci within 1 Mb region of the index or proxy SNP. Three additional BMI loci (FANCL, TFAP2B and ETV5) and five WC/WHR loci (DNM3-PIGC, GRB14, ADAMTS9, LY86 and MSRA) displayed Bonferroni-corrected significant associations with BMI and WC/WHR. Conditional analyses of each index SNP (or its proxy) and the most significant SNP within the 1 Mb region supported the possible presence of index-independent signals at each of these eight loci as well as at KCTD15. CONCLUSION: This study provides evidence for the generalization of nine BMI and seven central adiposity loci in Hispanic women. This study expands the current knowledge of common adiposity-related genetic loci to Hispanic women

    Mucinous cystic neoplasm of the pancreas in a male patient

    Get PDF
    Mucinous cystic neoplasms (MCNs) make up a morphologic family of similar appearing tumors arising in the ovary and various extraovarian organs such as pancreas, hepatobiliary tract and mesentery. MCNs of the pancreas occur almost exclusively in women. Here, we report a rare case of MCN in a male patient. A 39-year-old man was admitted to our hospital with the chief complaint of back pain. Abdominal computed tomography revealed a multilocular cyctic mass 6.3 cm in diameter in the pancreatic tail. In addition, the outer wall and septae with calcification were demonstrated in the cystic lesion. On magnetic resonance imaging , the cystic fluid had low intensity on T1-weighted imaging and high intensity on T2-weighted imaging. Endoscopic retrograde cholangio-pancreatography (ERCP) showed neither communication between the cystic lesion and the main pancreatic duct nor encasement of the main pancreatic duct. Endoscopic ultrasonography revealed neither solid component nor thickness of the septae in the cystic lesion. Consequently, we performed distal pancreatectomy with splenectomy under the diagnosis of cystic neoplasia of the pancreas. Histopathologically, the cystic lesion showed two distinct component: an inner epithelial layer and an outer densely cellular ovarian-type stromal layer. Based on these findings, the cystic lesion was diagnosed as MCN
    • ā€¦
    corecore