

Generalization of adiposity genetic loci to US Hispanic women

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Graff, M., L. Fernández-Rhodes, S. Liu, C. Carlson, S. Wassertheil-Smoller, M. Neuhouser, A. Reiner, et al. 2013. "Generalization of adiposity genetic loci to US Hispanic women." Nutrition & Diabetes 3 (8): e85. doi:10.1038/nutd.2013.26. http://dx.doi.org/10.1038/nutd.2013.26.
Published Version	doi:10.1038/nutd.2013.26
Accessed	April 17, 2018 4:39:39 PM EDT
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877123
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms- of-use#LAA

(Article begins on next page)

www.nature.com/nutd

original article Generalization of adiposity genetic loci to US Hispanic women

M Graff^{1,14}, L Fernández-Rhodes^{1,14}, S Liu², C Carlson³, S Wassertheil-Smoller⁴, M Neuhouser³, A Reiner³, C Kooperberg³, E Rampersaud⁵, JE Manson⁶, LH Kuller⁷, BV Howard⁸, HM Ochs-Balcom⁹, KC Johnson¹⁰, MZ Vitolins¹¹, L Sucheston¹², K Monda¹ and KE North^{1,13}

BACKGROUND: Obesity is a public health concern. Yet the identification of adiposity-related genetic variants among United States (US) Hispanics, which is the largest US minority group, remains largely unknown.

OBJECTIVE: To interrogate an *a priori* list of 47 (32 overall body mass and 15 central adiposity) index single-nucleotide

polymorphisms (SNPs) previously studied in individuals of European descent among 3494 US Hispanic women in the Women's Health Initiative SNP Health Association Resource (WHI SHARe).

DESIGN: Cross-sectional analysis of measured body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) were inverse normally transformed after adjusting for age, smoking, center and global ancestry. WC and WHR models were also adjusted for BMI. Genotyping was performed using the Affymetrix 6.0 array. In the absence of an *a priori* selected SNP, a proxy was selected $(r^2 \ge 0.8 \text{ in CEU})$.

RESULTS: Six BMI loci (*TMEM18, NUDT3/HMGA1, FAIM2, FTO, MC4R* and *KCTD15*) and two WC/WHR loci (*VEGFA* and *ITPR2-SSPN*) were nominally significant (*P* < 0.05) at the index or proxy SNP in the corresponding BMI and WC/WHR models. To account for distinct linkage disequilibrium patterns in Hispanics and further assess generalization of genetic effects at each locus, we interrogated the evidence for association at the 47 surrounding loci within 1 Mb region of the index or proxy SNP. Three additional BMI loci (*FANCL, TFAP2B* and *ETV5*) and five WC/WHR loci (*DNM3-PIGC, GRB14, ADAMTS9, LY86* and *MSRA*) displayed Bonferroni-corrected significant associations with BMI and WC/WHR. Conditional analyses of each index SNP (or its proxy) and the most significant SNP within the 1 Mb region supported the possible presence of index-independent signals at each of these eight loci as well as at *KCTD15*. **CONCLUSION:** This study provides evidence for the generalization of nine BMI and seven central adiposity loci in Hispanic women.

This study expands the current knowledge of common adiposity-related genetic loci to Hispanic women.

Nutrition & Diabetes (2013) 3, e85; doi:10.1038/nutd.2013.26; published online 26 August 2013

Keywords: obesity; Hispanic; women; genetics; generalization

INTRODUCTION

Little is known about the etiologic factors underlying the high prevalence of obesity, particularly among United States (US) minority populations. Concurrent with the obesity epidemic, US demographics have dramatically shifted. As of 2010, US Hispanics represented approximately 16% of the nation to become its largest minority group.¹ Between 2009 and 2010, 41% of US Hispanic women were overweight or obese as compared with 32% of their non-Hispanic White counterparts,² with the most notable ethnic disparities occurring among Puerto Rican and Dominican women.³ Thus, there is a rising impetus to investigate the underlying determinants of obesity among these populations.

In the past 5 years, genome-wide association studies (GWAS) have identified nearly 50 common genetic loci associated with body mass index (BMI)^{4–6} and anthropometric measures of central adiposity (that is, waist circumference (WC) and waist-to-hip ratio (WHR))^{7,8} in European middle-aged adult populations from Europe, Australia, and the US recent GWAS in non-European ancestry populations have identified additional novel loci,

including four new BMI-associated loci among East Asians, of which at least two loci do not show association in individuals of European descent^{3,7,9} and possibly three novel loci in a GWAS of BMI in individuals of African descent completed recently.^{9–13} Targeted genotyping studies of selected variants have been undertaken in Hispanic Americans.¹⁴ However, to date the contribution of genetic variants to adiposity traits in this diverse ethnic group remain largely unknown.

We investigated the associations of adiposity measures with previously identified European descent established genetic loci for BMI, WC and WHR among 3587 self-identified Hispanic women from the Women's Health Initiative (WHI) SNP (single-nucleotide polymorphism) Health Association Resource (SHARe).

MATERIALS AND METHODS

WHI SHARe participants

WHI consists of multiple components including an observational study and clinical trial cohorts of postmenopausal women in the US;¹⁵ detailed

¹⁴Co-first authorship.

¹Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; ²Department of Epidemiology, University of California, Los Angeles, CA, USA; ³Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁴Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; ⁵Department of Human Genetics, University of Miami, Miami, FL, USA; ⁶Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ⁷Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; ⁸Medstar Health Research Institute, Hyattsville, MD, USA; ⁹Department of Social and Preventive Medicine, University at Buffalo, NY, USA; ¹⁰Department of Preventive Medicine, University of Tennessee, Memphis, TN, USA; ¹¹Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA; ¹²Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA and ¹³Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Correspondence: Dr M Graff, Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Bank of America, Suite 306, Campus Box 8050, Chapel Hill, NC 27514, USA.

Received 11 February 2013; revised 28 June 2013; accepted 22 July 2013

recruitment and exclusion criteria have been described previously.¹⁶ Medical histories were updated annually or semi-annually by questionnaire or by phone. All participating institutions obtained Institutional Review Board approval. WHI SHARe included a total sample of 3642 self-identified Hispanic subjects from WHI, who had consented to genetic research.

Phenotypes

All phenotypic information (for example, covariate and outcome variables) was obtained during the WHI baseline questionnaires and clinic examination. Weight was measured after removing shoes, heavy clothing and pocket contents using a calibrated digital scale and recorded to the nearest one-tenth of a kilogram. Height was taken using a wall-mounted stadiometer and recorded to nearest one-tenth of a centimeter. BMI was calculated from measured height and weight (kg m⁻²) and was missing for 26 of the participants in our sample. WC was measured at the level of natural waist (narrowest part of torso, n = 14 missing) and hips at top of the iliac crest with extra layers of clothes removed (n = 13 missing) and recorded to nearest half-centimeter. WHR was then calculated as the ratio of waist to hip circumference (n = 16 missing).

Genotypes

As described previously,¹⁷ DNA was extracted by the Specimen Processing Laboratory at the Fred Hutchinson Cancer Research Center (FHCRC) using white blood cells that were collected at the time of enrollment of the subjects in WHI. Specimens were stored at a central biorepository at -80 °C until analysis. Genotyping was done at Affymetrix, Inc. on the Affymetrix 6.0 array (Santa Clara, CA, USA), using 2 µg DNA at a concentration of 100 ng µl⁻¹.

Quality control

Of the 3642 women in WHI SHARe who self-identified as Hispanic and consented for genetic testing, approximately 1% of their genetic samples could not be genotyped (n = 36). We excluded samples that had call rates below 95%, which were duplicates of subjects other than their monozygotic twins, or that appeared to include a Y chromosome (that is, representing possible sample contamination, genotyping errors or an inconsistent genotypic sex; n = 19). Furthermore, SNPs that were located on the Y chromosome or were Affymetrix QC probes (that is, not intended for analysis) were excluded (n = 3280). SNPs with a call rate below 95% or concordance rate below 98% were flagged and excluded leaving 871 309 SNPs. These quality control measures left us with 3587 Hispanics and an average call rate of 99.8% across the 871 309 unflagged SNPs. We also excluded one person from identified relative pairs, prioritizing for complete genotype data (n = 93), leading to a final analytic sample of 3494 self-identified Hispanic women.

Two hundred thirty-eight (2%) additional samples were genotyped as blind duplicates. We analyzed 188 pairs of blind duplicate samples. The overall concordance rate was 99.8% (range 95–100% over all samples, 98–100% across 871 309 SNPs that were included after genotype cleaning).

Admixture

Eigenvectors were computed in Eigenstrat^{18,19} to account for global ancestry based on 178 101 markers, excluding mitochondria and sex chromosome markers, that were in common between WHI Hispanics samples and HapMap^{20,21} and HGDP²² reference panels. In particular, we excluded SNPs that were A/T or C/G, on the sex chromosomes, or in the mitochondria. Individuals included from HGDP panels were 225 East Asians and 63 Native Americans, specifically 8 Surui, 22 Mayans, 13 Karitiana, 14 Pima and 6 Colombian. We also estimated proportions of European, Native American and African ancestry (Supplementary Figure 1) in the unrelated WHI SHARe sample (n=3494) using Admixture 1.22 (http://www.genetics.ucla.edu/software/admixture).

Adiposity SNP selection

One SNP from each established adiposity locus (described as of 1 July 2012 with BMI WC or WHR in GWAS of European descent individuals) was selected. A total of 47 loci were selected; 32 loci previously associated with BMI and 15 loci previously associated with WC or WHR (Tables 2a and 3a). All selected SNPs from the original publications were those that had the lowest *P*-value and that met genome-wide significance within a predefined locus (typically defined as 1 Mb and $r^2 < 0.1$).

Generalization

We assessed generalization of previously established GWAS loci using a tiered approach. All SNPs analyzed here were originally reported in populations of European descent, so we define 'generalization' of a genetic effect when a SNP displays a direction of effect consistent with the original report and/or in terms of statistical significance as defined below.

First we interrogated the exact SNP from the published literature, which we defined as an 'index SNP'. All selected index SNPs met genome-wide significance level in prior publications. To assess the consistency of effects in our study, we accessed genome-wide publically available data from the Genetic Investigation of ANthropometric Traits (GIANT) Consortium on the risk allele and its frequency in their large sample of individuals of European descent. Loci previously described with overall or central adiposity were queried in the BMI and WHR adjusted for BMI GWAS results files, respectively. If this information was missing, then we supplemented it with the relevant publication to determine directional consistency. If the previously reported adiposity SNP was not genotyped as part of WHI SHARe, the WHI SHARe SNP in highest linkage disequilibrium (LD) with the previous reported SNP ($r^2 \ge 0.8$ in Hap Map CEU phase II) was selected as a proxy of the index signal. Generalization of the index or proxy SNPs was declared when directional consistency and nominal statistical significance (P < 0.05) were observed.

Owing to the extensive admixture in populations of self-identified Hispanic ancestry,^{23,24} we also hypothesized that even if a SNP originally identified in European or East Asian ancestry populations is not associated with BMI in those within our cohort of women who report Hispanic ancestry, the locus may still show association with a different variant in the same chromosomal region. Therefore, we searched for common variants within the established loci that better captured the association of the index SNP reported in the European and Asian populations. We identified SNPs as potentially better markers of the index signal, 'index-dependent signals', if they were (1) within 1 Mb of the index SNP, (2) were dependent on the index SNP in the referent population ($r^2 \ge 0.2$) and (3) were associated with the anthropometric traits in our data at a significance level that was at least one order of magnitude greater than the index SNP or its proxy. In contrast, we also interrogated the evidence for possible 'indexindependent signals' by visual inspection of all P-values of SNPanthropometric trait associations for 'SNPs of interest' with $r^2 < 0.2$ and within the 1 Mb region of the index SNP. Index-independent signals were deemed statistically significant if they displayed nominal significance after correcting for the total number of regions interrogated for each phenotype of interest (BMI: P = 0.05/32 and WC/WHR: P = 0.05/15). Conditional analyses were also conducted to confirm signal dependence. If adjustment for the index SNP decreased the P-value for the candidate indexindependent signal, the SNP-phenotype association was considered suggestive evidence for an index-independent signal, without overwhelming proof that the signal was indeed independent. Certainly these signals need to be further interrogated with much larger sample sizes and/ or fine mapping and within the different sub-populations of US Hispanic ancestry. In contrast, if the conditional P-value did not change or increased less than one order of magnitude in comparison with the unconditional P-value, then we declared this a possible index-independent signal. All conditional analyses were modeled in Stata 12 (StataCorp LP, College Station, TX, USA).

Statistical models

After adjusting for age, smoking status and clinical center, BMI residuals were inverse normally transformed. WC and WHR were adjusted for age, smoking status, clinical center as well as BMI, and then the residuals were inverse normally transformed. Inverse normal transformations entail creating a modified rank variable and then computing a new transformed value for the phenotype per subject such that the distribution of the phenotype is normalized with a mean of 0 and an s.d. of 1. For each of the three inverse normalized phenotypes (that is, BMI, WC adjusted for BMI) and WHR adjusted for BMI) single marker linear associations further adjusted for the top 10 principal components assuming an additive model, were run using PLINK software v1.07.²⁵ Estimated *P*-values below 5×10^{-8} were considered to be genome-wide significant.

LD assessment

We considered signals independent if their LD was $r^2 < 0.2$ in a sample of 9345 individuals of European descent (primarily non-Hispanic Whites) from the Atherosclerosis Risk in Communities Study (ARIC). If information was

not available from ARIC then HapMap CEU data (phase II or III) were used to represent the LD structure of individuals of European descent and are specifically noted in Tables 2b and 3b. In addition, estimates of LD were calculated in WHI SHARe Hispanics. LD estimates for both ARIC and WHI SHARe were calculated using the PLINK software v1.07.²⁵

	Full sai (N = 3		Analytic (N = 3	
-	Number/ range	%	Number/ range	%
Gender				
Women Men	3587	100.0%	3494	100.0%
Age at assessment				
50–59 years	1803	50.3%	1751	50.1%
60–69 years 70–79 years	1415 369	39.4% 10.3%	1387 356	39.7% 10.2%
Missing	509	10.570	550	10.270
Hispanic ethnic subgroup ^a				
Mexican, Chicano,	1541	43.0%	1485	42.5%
Mexican-American	260	10.20/	261	10.20/
Puerto Rican Cuban	369 255	10.3% 7.1%	361 252	10.3% 7.2%
Other	255 814	22.7%	806	23.1%
No subgroup indicated	162	4.5%	159	4.6%
Missing	446	12.4%	431	12.3%
Study participation				
Observational study only	1729	48.2%	1681	48.1%
Clinical trial	1858	51.8%	1813	51.9%
Hormone replacement trial	980	27.3%	953	27.3%
Control arm	472	13.2%	463	13.3%
Dietary modification trial	1202	33.5%	1175	33.6%
Control arm	730	20.4%	715	20.5%
Calcium/vitamin D trial Control arm	1057 495	29.5% 13.8%	1025 479	29.3% 13.7%
Missing	495	13.8%	479	13.7%
US region Northeast South Midwest West Missing	448 1459 136 1544	12.5% 40.7% 3.8% 43.0%	441 1422 133 1498	12.6% 40.7% 3.8% 42.9%
Marital status	450			
Never married	153	4.3%	149	4.3%
Divorced or separated	750	20.9%	735	21.0%
Widowed Presently married	478 2076	13.3% 57.9%	463 2020	13.3% 57.8%
Marriage-like relationship	85	2.4%	82	2.3%
Missing	45	2.470	45	2.570
Education	016	22 70/	000	22.00/
No formal to incomplete high school	816	22.7%	802	23.0%
High school diploma or equivalent	1914	53.4%	1857	53.1%
College or higher degree Missing	802 55	22.4%	781 54	22.4%
Body mass index ^b	20.00		20.07	
Mean (s.d.)	28.88		28.87	
Underweight (< 18.5 kg m ⁻²)	(5.59) 7	0.2%	(5.59) 7	0.2%
Normal $(18.5-24.9 \text{ kg m}^{-2})$	889	24.8%	, 871	24.9%
Overweight $(25-29.9 \text{ kg m}^{-2})$	1387	38.7%	1344	38.5%
Obesity (30–34.9 kg m ⁻²)	828	23.1%	806	23.1%
Obesity II $(35-39.9 \text{ kg m}^{-2})$	300	8.4%	294	8.4%
Extreme obesity (≥40 kg m ⁻²) Missing	150 26	4.2%	146 26	4.2%
Waist circumference (cm)				
Mean (s.d.)	86.60		86.58	
	(12.30)		(12.31)	
			62-78	
1st quartile	62–78		02 70	
1st quartile 2nd quartile	62–78 79–85		79-85	

Power

We calculated estimates of power to detect associations of similar magnitude among Hispanics as those previously described in European populations across a range of common minor allele frequencies. These calculations assumed an additive genetic model, an independent sample of 3494 women, the same Bonferroni corrections and phenotype distribution as observed in our sample of US Hispanic women. Based on effect sizes published in European populations, power to detect associations was less among measures of overall (BMI) than for central adiposity (WC and WHR; Supplementary Figure 2). For example, at the minor allele frequency and previously reported effect size of FTO (32% and beta = 0.39 kg m^{-2} change per T allele)⁴ we would at best have 40% statistical power to detect this effect in our study. Similarly, power to detect associations of all other BMI loci was below 80%. Moderately common WC variants (>20%) would be expected to have >80% power at mid-sized effects, which was approximately 1 cm change in WC per effect allele; whereas, most common WHR variants (>5%) frequent would be expected to have > 80% power at far smaller effect sizes (approximately 0.011 WHR units). Power calculations were calculated using QUANTO v1.2.4 (http://hydra.usc.edu/gxe/).

RESULTS

The final analytic sample of self-identified Hispanic women included in this sample was 3494. As shown in Table 1, the largest percentage of the women in this sample were between 50 and 59 years of age with a high school diploma or equivalent, were married, of Mexican ancestry, overweight in the absence of abdominal obesity as defined by the World Health Organization^{26–28} and were participants in a clinical trial from one of the Western or Southern WHI study centers.

Adiposity SNP generalization

Although no SNPs reached genome-wide significance in this study, we were able to investigate the associations at 47 established obesity loci previously identified in European populations with BMI, WC and WHR in our sample of Hispanic women (Tables 2b and 3b). As summarized in Figure 1, among 16 loci with

Table 1. (Continued)				
	Full sat (N = 3		Analytic (N = 3	
	Number/ range	%	Number/ range	%
Hip circumference (cm)				
Mean (s.d.)	105.84		105.83	
	(11.14)		(11.13)	
1st quartile	85–98		85–98	
2nd quartile	99–104		99–104	
3rd quartile	105–112		105–112	
4th quartile	113–144		113–144	
Missing	13		13	
WHR ^a				
Mean (s.d.)	0.82		0.82	
	(0.07)		(0.07)	
No abdominal obesity (WHR≤0.85)	2476	69.0%	2413	69.1%
Abdominal obesity (WHR≥0.85)	1095	30.5%	1065	30.5%
Missing	16		16	

Abbreviations: WHO, World Health Organization; WHR, waist-to-hip ratio; WHI SHARe, Women's Health Initiative SNP Health Association Resource. ^aThe other category may include. ^bOverweight and obesity as defined by the WHO expert consultation. Appropriate body mass index for Asian populations and its implications for policy and intervention strategies. The Lancet, 2004; 157–163. Waist Circumference and Waist-Hip Ratio, Report of a WHO Expert Consultation". World Health Organization. 8–11 December 2008. Retrieved 21 March 2012.

GIANT consorti	um								
Index or proxy SNP	In/near gene	Chr	BP position	Phenotype	GWAS P-value		Risk allele	Risk allele frequency HapMap CEU	GIANT P-value
rs2815752	NEGR1	1	72524461	BMI	1.61E-22	[⁶]	А	0.62	1.17E–14
rs1514175	TNNI3K	1	74764232	BMI	8.16E-14	[⁶]	A	0.57	1.41E-09
rs1555543	PTBP2	1	96717385	BMI	3.68E-10	[⁶]	С	0.58	7.81E-07
rs543874	SEC16B	1	176156103	BMI	3.56E-23	[⁶]	G	0.19	1.66E-13
rs6548238	TMEM18	2	624905	BMI	3.20E-26	[²]	С	0.88	1.02E-20
rs713586	RBJ/ADCY3/POMC	2	25011512	BMI	6.17E-22	[⁶]	С	0.52	2.51E-07
rs759250 ^a	FANCL	2	59182657	BMI	1.79E-12	[⁶]	А	0.32	5.34E-06
rs2121279 ^b	LRP1B	2	142759755	BMI	1.35E-10	[⁶]	Т	0.12	1.37E-06
rs13098327 ^c	CADM2	3	85902871	BMI	3.94E-11	[⁶]	А	0.18	1.14E-07
rs1516728 ^d	ETV5/SFRS10/DGKG	3	187312585	BMI and weight	7.20E-11	[¹]	А	0.78	9.50E-11
rs12641981 ^e	Gene desert; GNPDA2	4	44874640	BMI	3.78E-31	[⁶]	Т	0.43	7.34E-17
rs3797580 ^f	FLJ35779/HMGCR	5	75038812	BMI	2.17E-13	[⁶]	А	0.64	1.92E-07
rs6864049 ⁹	ZNF608	5	124358421	BMI	1.97E-09	[⁶]	G	0.43	3.73E-06
rs987237 ^h	PRL	6	50911009	BMI and obesity	1.40E-05	[⁵]	G	0.09	5.97E-16
rs9366426	TFAP2B	6	22172618	BMI	2.90E-20	[⁶]	С	0.60	6.00E-01
rs3798560 ⁱ	NUDT3/HMGA1	6	34451544	BMI	3.02E-08	[⁶]	С	0.17	5.25E-06
rs10508503	PTER	10	16339957	BMI and obesity	2.10E-07	[⁵]	С	0.93	6.40E-01
rs10840083 ^j	RPL27A/ TUB	11	8565212	BMI	2.80E-09	[⁶]	А	0.6	1.92E-07
rs10501087	BDNF/LGR4/LIN7C	11	27626684	BMI and weight	8.70E-11	[¹]	Т	0.8	1.41E-12
rs3817334	MTCH2	11	47607569	BMI	1.59E-12	[⁶]	Т	0.45	4.79E-11
rs7138803	FAIM2 (and BCDIN3D)	12	48533735	BMI and weight	1.82E-17	[⁶]	А	0.44	3.96E-11
rs7988412 ^k	MTIF3	13	26898282	BMI	9.48E-10	[⁶]	Т	0.23	2.57E-06
rs10151686 ¹	PRKD1	14	29536217	BMI	5.76E-11	[⁶]	А	0.03	6.62E-08
rs17109221 ^m	NRXN3	14	78979872	BMI	2.75E-11	[⁶]	Т	0.27	2.31E-07
rs8054079 ⁿ	GPRC5B/IQCK	16	19882908	BMI	2.91E-21	[⁶] ^{††}	С	0.13	2.91E-21
rs8049439	SH2B1	16	28745016	BMI and weight	1.40E-09	[¹]	С	0.37	1.48E-09
rs9939609	FTO	16	52378028	BMI	4.90E-74	[²]	А	0.45	9.94E-60
rs9921354°	MAF	16	78240951	BMI and obesity	3.80E-13	[⁵]	Т	0.51	2.57E-01
rs1652376 ^p	NPC1	18	19363464	BMI and obesity	2.90E-07	[5]	G	0.51	9.14E-04
rs571312	MC4R	18	55990749	BMI	6.43E-42	[⁶]	А	0.28	2.14E-22
rs11084753	KCTD15	19	39013977	BMI	4.50E-12	[²]	G	0.63	3.62E-09
rs8101149 ^q	TMEM160/ZC3H4	19	52292281	BMI	1.64E-12	[⁶]	А	0.68	2.48E-06

Table 2a. Significance level of loci associated with BMI and/or weight from published GWAS studies in European descent men and women and the GIANT consortium

Abbreviations: BMI, body mass index; BP, base pair; Chr, chromosome; GIANT, Genetic Investigation of ANthropometric Traits Consortium; GWAS, genome-wide association study; SNP, single-nucleotide polymorphism. ^{††}As data were missing for rs8054079 in the publically available sources, information on rs12444979 was extracted from Speliotes *et al.* In this case, because of the tight linkage disequilibrium between the two variants we inferred that the lowester frequent allele at rs80504079 would increase BMI. ^aProxy SNP for rs887912, $r^2 = 1$; ^bProxy SNP for rs2890652, $r^2 = 0.8$; ^cProxy SNP for rs13078807, $r^2 = 1$; ^dProxy SNP for rs7647305, $r^2 = 0.8$; ^cProxy SNP for rs1093897, $r^2 = 1$; ⁱProxy SNP for rs2112347, $r^2 = 0.9$; ⁱProxy SNP for rs2436133, $r^2 = 1$; ⁱProxy SNP for rs4712652, $r^2 = 0.9$; ⁱProxy SNP for rs1806936, $r^2 = 1$; ^jProxy SNP for rs1424979, $r^2 = 0.9$; ^kProxy SNP for rs112347, $r^2 = 0.9$; ⁱProxy SNP for rs11847697, $r^2 = 0.8$; ^cProxy SNP for rs11847697, $r^2 = 0.9$; ⁱProxy SNP for rs105332, $r^2 = 1$; ⁱProxy SNP for rs1244979, $r^2 = 0.9$; ⁱProxy SNP for rs18426133, $r^2 = 1$; ⁱProxy SNP for rs1244979, $r^2 = 0.9$; ⁱProxy SNP for rs1847697, $r^2 = 0.9$; ⁱProxy SNP for rs18424979, $r^2 = 0.9$; ⁱProxy SNP for rs18424979, $r^2 = 0.9$; ⁱProxy SNP for rs1847697, $r^2 = 0.9$; ⁱProxy SNP for rs18424979, $r^2 = 0.9$; ⁱProxy SNP for rs1847697, $r^2 = 0.9$; ⁱProxy SNP for rs1842

evidence of generalization 7 were defined as 'index-dependent signals'. Of these seven, five loci were best represented by the index SNP (or its proxy) and two by a better marker in the region (defined as 'other index-dependent signal'). A total of nine loci displayed, at least, suggestive evidence for index-independent signals as the SNP in these loci with the lowest *P*-value were in low LD with the index signals previously described among European descent individuals and remained nominally significant after adjustment for the index SNP (or its proxy) in conditional analyses.

Among the 32 BMI index signals interrogated in this study, 25 had consistent directions of association as compared with publically available GIANT BMI results, which is more than expected by chance (binomial $P = 2.4 \times 10^{-3}$). The five loci (reported above) with either evidence of generalization at the index or proxy SNP, or evidence of a better marker displayed consistent directions of effect with BMI. Among the 15 central adiposity index signals interrogated in this study, 13 had consistent directions of effects at the WC index SNP or their proxies (more than expected by chance, binomial $P = 3.2 \times 10^{-3}$) and all had consistent directions of effect at the WHR index SNP or its proxy (binomial $P = 3.1 \times 10^{-5}$), as compared with publically available GIANT WHR adjusted for BMI results. WC/WHR loci with

either evidence of generalization at the index or proxy SNP, or evidence of a better marker displayed consistent direction of effects with the central adiposity phenotype, for which they were previously reported.

Among index or proxy SNPs selected, the BMI phenotype showed the strongest association with rs9939609 in the *FTO* locus (beta (s.e.) = 0.085 (0.026); P = 0.001), followed rs11084753 in the *KCT615* locus (beta (s.e.) = -0.070 (0.025); P = 0.006). Other nominally significant (P < 0.05) loci were found for *MC4R* (rs571312), *NUDT3/HMGA1* (rs378560), *FAIM2* (rs7139903) and *TMEM18* (rs6548238). Again, among the index or proxy SNPs selected, the strongest association with WC and WHR was found with rs60905288 near *VEGFA* (WC: beta (s.e.) = -0.075 (0.024); WHR: beta (s.e.) = -0.072 (0.024); P = 0.002 for both). A locus near *ITPR2-SSPN* showed a nominal association with WHR (rs12814794, beta (s.e.) = 0.050 (0.025); P = 0.04).

For 11 adiposity loci (6 BMI and 5 WC/WHR), we observed a 'SNP of interest' with at least one order of magnitude smaller *P*-value than the index SNP or its proxy. These loci are displayed in Supplementary Figures 3–6. SNPs at two loci previously associated with BMI, *NUDT3/HMGA1* (rs6925243, $P = 7.84 \times 10^{-4}$), and *MC4R* (rs1942867; $P = 1.95 \times 10^{-5}$) were dependent on their respective

	 * Estimated r² with index r² with index SNP (in effect in SNP (in ARIC WHI SHARe Hispanic kg m⁻² Whites) women) 	F381572 Wight F17389316 7 2331927 - G/A 0.21 3450 0.081 0.036 6.85 0.136 0.134
eight	S.e. P-value*	0.030 6.83E-03 0.027 2.94E-02 0.040 2.57E-02 0.052 4.75E-03 0.052 4.75E-03 0.025 2.30E-04 0.030 1.90E-03 0.028 1.14E-03 0.028 1.14E-03 0.044 2.208E-03 0.042 7.09E-02 0.160 2.08E-03 0.042 1.05E-03 0.041 1.57E-03 0.056 6.232E-02 0.026 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.042 1.77E-03 0.041 1.71E-02 0.026 0.179 3.34E-04 0.017 3.34E-04 0.017 3.34E-04 0.017 3.34E-04 0.017 3.34E-04 0.017 3.34E-04 0.017 3.34E-04 0.017 3.34E-04 0.017 1.50E-02 0.026 1.164E-02 0.030 1.95E-04 0.179 3.34E-04 0.179 3.34E-03 0.041 1.71E-02 0.042 1.95E-04 0.179 3.34E-03 0.041 1.71E-02 0.041 1.71E-02 0.042 1.95E-04 0.179 3.34E-03 0.041 1.71E-02 0.041 1.71E-02 0.042 1.95E-04 0.147 1.50E-02 0.041 1.71E-02 0.041 1.71E-02 0.042 1.156E-04 0.147 1.56E-04 0.041 1.71E-02 0.042 1.156E-04 0.041 1.71E-02 0.044 1.157E-03 0.044 1.157E-
BMI and/or w	Effect estimate	$\begin{array}{c} 0.081 \\ 0.003 \\ 0.0090 \\ 0.090 \\ 0.0147 \\ 0.003 \\ 0.093 \\ 0.093 \\ 0.093 \\ 0.093 \\ 0.093 \\ 0.091 \\ 0.0133 \\ 0.0133 \\ 0.0068 \\ 0.008 \\ 0.008 \\ 0.0133 \\ 0.0135 \\ 0.008 \\ 0.008 \\ 0.009 \\ 0.0009 \\ 0.009 \\ 0.0000 \\ 0.0009 \\ 0.0000 \\ 0.0009 \\ 0.0009 \\ 0.0000 \\ 0.0$
ed with	z	3450 3465 3465 3465 3465 3465 3465 3465 3466 3466
associati	MAF	0.21 0.21 0.01 0.01 0.05 0.026 0.324 0.034 0.034 0.01 0.035 0.036 0.036 0.036 0.036 0.037 0.036 0.037 0.035 0.0370 0.03700 0.0370 0.03700 0.03700 0.03700 0.03700 0.0370000000000
dividuals	Minor/ major allele	6/A
scent ind	Strand	index Bf index Bf single-r. 2 2 or Ha
ı European de	BP position	72391927 74948453 96848822 827100 827100 24989124 58978503 142210831 820089000 187431942 44924340 75020375 12454764 50908267 75020375 12454764 50908267 75020375 12454360 75020375 1245435 124554764 50908267 7922367 227745435 47812690 48341609 227745435 732305915 10091103 88430591 227745435 732305915 124524764 7922367 2277424355 52382289 78220241 19428220 55887250 5588720 5588720 5588720 5588720 5588720 5588720 558720 558720 5588720 5588720 5588720 5588720 5588720 5588720 5588720 558720 5588720 558720 5588720 558720 558720 5588720 5588720 5587200 5587200 5587200 55872000 55872000000
oci from	Chr	Study: B Study:
or published Ic	Most significant SNP**	rs17589316 rs17589316 rs1715529 rs1715529 rs1652325 rs16853326 rs2875492 rs4672266 rs2875492 rs457517 rs10838336 rs16833611 rs57648336 rs348551 rs1041928 rs1041928 rs1041928 rs1041928 rs1041928 rs1041928 rs1041928 rs10492484 rs1041928 rs10492484 rs1041928 rs1043379 rs1041928 rs1043379 rs1041928 rs1043379 rs1043379 rs1043379 rs104142867 rs1043379 rs104142867 rs1043379 rs10416241455 rs10422592 rs1043379 rs10414262 rs1043379 rs10414262 rs104262 rs104262 rs104262 rs104267 rs104267 rs105312 rs104670 rs1047657 rs104267 rs105312 rs104670 rs1047657 rs105312 rs104670 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs10470 rs107700 rs107700 rs107700 rs107700 rs107700 rs107700 rs107700 rs107700 rs10770
Results in Hispanic women for published loci from European descent individuals associated with BMI and/or weight	In/near nene	rs2815752 NEGR1 rs17589316 1 723919 rs15151752 TNN13K rs17095822 1 749448 rs15151752 TNN13K rs17115529 1 968488 rs1555543 FTBP2 rs17115529 1 968488 rs55386 FALAL rs17115529 1 968488 rs55386 FANCL rs10205204 2 8271 rs71386 FANCL rs10205204 2 589739 rs71386 FANCL rs10205206 2 589739 rs1516728 ⁴ FL/5779/MGCR rs4573265 3 142913 rs1516728 ⁴ FL/35779/MGCR rs457376 5 750203 rs1516728 ⁴ FL/35779/MGCR rs4673266 5 7098239 rs1516728 ⁴ FL/35779/MGCR rs4673266 5 749243 rs1516728 ⁴ FL/35779/MGCR rs4673266 5 700303 rs151686 ⁴ NUD73/MGA1 rs478237 10 160911 277443 rs357506 FL/3577/US rs387611 6 2797437
Table 2b. Res	Index or proxy SNP	rs2815752 rs1514175 rs1555543 rs1555543 rs5759250 ^a rs5759250 ^a rs713586 rs713586 rs12641981 ⁶ rs12641981 ⁶ rs12641981 ⁶ rs12641981 ⁶ rs1764049 ⁹ rs12641981 ⁶ rs17641981 ⁶ rs17641981 ⁶ rs17641981 ⁶ rs17641981 ⁶ rs17641981 ⁶ rs17641981 ⁶ rs17641981 ⁶ rs1764439 rs1764439 rs17010521 ⁸ rs17019221 ^m rs804439 rs1710221 ^m rs8043439 rs1652376 ⁶ rs11084733 rs101147 ⁶ rs10147 ⁶ rs10147 ⁶ rs10672147 rs80101149 ⁶ rs10672147 rs80101149 ⁶ rs10687 rs802412 ⁶ rs11084753 rs802412 ⁶ rs11084753 rs110147 ⁶ rs10147 ⁶ rs10147 ⁶ rs10147 ⁶ rs10147 ⁶ rs10087 rs8024079 ^m rs8024079 ^m rs8024079 ^m rs8024079 ^m rs8024079 ^m rs8024079 ^m rs80240137 rs8024079 ^m rs8024079 ^m rs80240121 ^m rs8024079 ^m rs8024070 ^m rs80240120 ^m rs80240120 ^m rs8024070 ^m rs80070 ^m rs800

5

© 2013 Macmillan Publishers Limited

Table 3a. Significance level of loci associated with with WC and WHR, after adjustment for BMI from published GWAS studies in European descent men and women and the GIANT consortium

Index or proxy SNP	In/near gene	Chr	BP position	Phenotype	GWAS P-value	Risk allele	Risk allele frequency HapMap CEU	GIANT P-value
rs2301453 ^a	DNM3-PIGC	1	170624790	WHR	9.51E–18 [⁷]	G	0.42	2.79E-10
rs2605100 ^b	LYPLAL1	1	217710847	WC and WHR	2.55E–08, ^{[3,7}] 6.89E–21	G	0.69	2.19E-09
rs6717858 ^c	GRB14	2	165247907	WHR	2.09E–24 [⁷]	Т	0.54	5.68E-10
rs6784615	NISCH-STAB1	3	52481466	WHR	3.84E–10 [⁷]	Т	0.95	3.18E-07
rs6795735	ADAMTS9	3	64680405	WHR	9.79E–14 [⁷]	С	0.54	2.47E-07
rs17695092 ^d	CPEB4	5	173270459	WHR	1.91E–09 [⁷]	G	0.29	8.27E-07
rs1294421	LY86	6	6688148	WHR	1.75E–17 [⁷]	G	0.6	6.31E-09
rs6905288	VEGFA	6	43866851	WHR	5.88E-25 [⁷]	Α	0.58	4.72E-10
rs987237	TFAP2B	6	50911009	WC and BMI	1.87E–11 ^{[3}]	G	0.09	0.096
rs1936805 ^e	RSPO3	6	127493809	WHR	1.84E–40 [⁷]	Т	0.55	1.28E-14
rs1055144	NFE2L3	7	25837634	WHR	9.97E-25 ⁷]	Т	0.18	1.49E-08
rs545854 ^{††}	MSRA	8	9897490	WC	8.89E–09 ³	G	0.18 ^{††}	0.64
rs12814794 ^f	ITPR2-SSPN	12	26331965	WHR	1.14E–17 ^{[7}]	G	0.18	3.25E-07
rs1822438 ^g	HOXC13	12	52628593	WHR	6.38E–17 [⁷]	A	0.2	4.70E-08
rs4823006	ZNRF3-KREMEN1	22	27781671	WHR	1.10E–11 ⁷]	А	0.53	4.47E-08

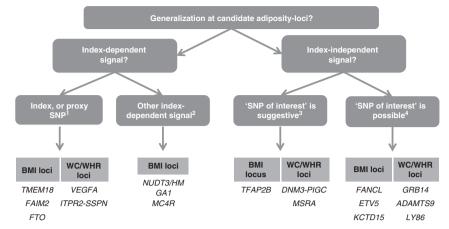
Abbreviations: BMI, body mass index; BP, base pair; Chr, chromosome; GIANT, Genetic Investigation of ANthropometric Traits Consortium; GWAS, genome-wide association study; SNP, single-nucleotide polymorphism; WC, waist circumference; WHR, waist-to-hip ratio. ^{††}rs7826222 was renamed rs545854 in HapMap Build 36 and thus is not present in Build 36 imputations based on that release of HapMap (release 22). As publically available information was not available for this SNP, information on the minor allele was supplemented from Lindgren *et al.* ^aProxy SNP for rs1011731, $r^2 = 1$; ^bIndex SNP from Lindgren *et al.*, but proxy SNP for rs4846567 from Heid et al. at $r^2 = 0.6$; ^cProxy SNP for rs1095252, $r^2 = 0.9$; ^dProxy SNP for rs6861681, $r^2 = 1$; ^eProxy SNP for rs9491696, $r^2 = 0.9$; ^fProxy SNP for rs12814794, $r^2 = 1$; ^gProxy SNP for rs1822438, $r^2 = 1$. Published results from studies of individuals of European decent: [¹] Thorleifsson *et al.*; [²] Willer *et al.*; [³] Lindgren *et al.*; [⁴] Heard-Costa *et al.*; [⁵] Meyre *et al.*; [⁶] Speliotes *et al.*; [⁷] Heid *et al.*

index or proxy SNPs in CEU ($r^2 \ge 0.2$), and therefore were considered to represent a better marker for Hispanics at the index signal (Table 2b, Supplementary Figures 6a and b).

Four BMI loci (FANCL, ETV5, TFAP2B and KCTD15; Supplementary Figures 3a-d), and five WC or WHR loci (DNM3-PIGC, GRB14, ADAMTS9, LY86 and MSRA; Supplementary Figures 4a-d and 5a-c) had low LD in HapMap CEU populations ($r^2 < 0.2$; Tables 2b and 3b) and were therefore considered as possible index-independent signals. All conditional P-values for the 'SNP of interest'phenotype association remained nominally significant after adjustment for the index SNP or its proxy (P < 0.05). One BMI locus (TFAP2B) appeared to have suggestive evidence of an indexindependent signal as the P-value decreased from the unconditional analysis for the association between the 'SNP of interest' and BMI (Table 4). However, the evidence for association at three BMI loci (near FANCL, ETV5 and KCTD15) for the 'SNP of interest'-BMI association became weaker on adjustment for the index SNP or its proxy. KCTD15 was the only locus of these nine loci to have significant evidence of both generalization at both the index signal (P = 0.006) and an independent signal ($r^2 < 0.2$; Tables 2a and 2b). At two central adiposity loci (near DNM3-PIGC and MSRA), there was suggestive evidence of index-independent signals for WC (Table 4). In contrast, at three previously described WHR loci (GRB14, ADAMTS9 and LY86) there was inconsistent evidence across the central adiposity phenotypes tested (WC and WHR models adjusted for BMI).

DISCUSSION

In this study of postmenopausal Hispanic women, we found that the majority of the 47 SNPs interrogated showed consistent direction of effect. Specifically, 25 of 32 SNPs for BMI (binomial test: P < 7.8E-04), and 13 and 15 of 15 SNPs for WC and WHR (binomial test: P < 3.2E-03 and P < 3.1E-05), respectively. Further, we found associations of nine loci with BMI and seven loci with waist phenotypes (WC or WHR) previously shown to be associated with these traits in European populations from Europe,


Australia and the United States. In addition, we present possible evidence for independent signals among Hispanics at nine of these loci, three of which became stronger after conditioning (locus near *TFAP2B* with BMI, and loci near *DNM3-PIGC* and *MSRA* with WC or WHR). As verification for the associations of these possible independent signals identified in the Hispanic women in samples of European descent individuals, we looked up the *P*-value in the original published results (Heid and Speliotes references) for seven of the nine SNPs that were available. None of the seven SNPs were even nominally significant (all P > 0.05).

Certainly the analyses conducted here needs to be independently verified in an additional Hispanic ancestry sample. Although the exact functional variants underlying these signals still remain to be identified, it is interesting to note that TFAP2B encodes a transcription factor that has previously been associated with both BMI and type 2 diabetes in primarily non-Hispanic populations.^{29–31} MSRA encodes a protein that is thought to repair of oxidative damage to proteins to restore biological activity.³² Deletion of this gene has been associated with insulin resistance in mice.³³ Dynamin 3 (DNM3), a member of the dynamin family of enzymes, and phosphatidylinositol glycan anchor biosynthesis, class C (PIGC), are involved in cell membrane interactions and adhesion of proteins to the cell membrane.^{34–36} Functional roles of some of the loci with possibly independent signals among Hispanics may include energy homeostasis for KCTD15 and ETV5 loci that are highly expressed in the hypothalamus,³⁷ and insulin signaling from *ADAMTS9*, and *GRB14* loci, particularly in muscle tissue.^{38–41}

Although the possibility of multiple signals at established GWAS loci needs to be confirmed in additional, larger samples of Hispanic ancestry, these findings add to the growing literature that indicates multiple variants for BMI, lipids and other complex traits. Moreover, these study findings also add to the growing literature that demonstrates suggestive generalizability of genetic loci across ancestrally distinct populations for some but not all loci. For example, for the SNPs associated with BMI in our Hispanic

	r ² with index SNP (in Hispanic women)	0.181	0.181	0.007	0.435	0.134	0.009	0.009	0.083	0.081	0.005	0.000 >	0.001		0.583	0.139	0.003	0.033	0.121	0.002	< 0.001	0.008	200.0	210.0 1000	< 0.001	< 0.001	0.003	0.002	le-nucleotide and below a lable in ARIC h rs6795735. ilable for this 5; ^c Proxy SNP	
	r ² with index SNP (in ARIC Whites)	0.057	0.057	< 0.001	01050	0.105	0.008	0.008	< 0.001	0.020	< U.UU <	0000	0.005	1.000	0.646	0.035	< 0.001	0.064†	0.124	0.011	< 0.001	< 0.001	100.0 <	00.046	0.005	0.005	< 0.001	< 0.001	y; SNP, sing (reference), n was unavai table LD wit was not ava was not ava	
	Estimated effect in cm (WC) or unitless (WHR)	1.613	0.008	1.065	- 1 CUUU - 1 CU	- 0.011	- 0.989	-0.006	1.357	- 0.006	/c/.n-	1 443	- 0.022	- 0.919	-0.006	-0.683	- 0.023	1.647	0.004	- 0.923	0.023	1.438	720.0	/60.0	1.071	0.007	- 1.227	- 0.004	allele frequenc or proxy SNPs LD information ere was calcula the information of from Heid <i>et</i>	
ment for BMI	P-value*	1.47E-03	8.24E-03	5.00E 03	3.3/E-U3 6.00E_03	9.56E-04	2.27E-02	1.19E–02	3.05E-03	9.14E-04	2.18E-U2 4.78E_03	6.63F-04	2.55E-03	1.97E-03	1.02E-03	2.58E-02	6.12E-02	1.16E–02	2.01E-02	2.45E-02	8.35E-03	2.43E-03	2.42E-UZ	2.21E-02 135E_03	7.23E-02	4.94E-03	5.91E-03	1.25E–02	MAF, minor (0.05) for index ce). ¹ If pairwise RIC Whites the ablically availab VP for rs484656	$r^{2} = 1.$
r adjustr	S.e.	0.041	0.041	0.031	670.0	0.047	0.035	0.035	0.037	0.026	0.026	0.020.0	0.106	0.024	0.024	0.025	0.179	0.053	0.025	0.033	0.125	0.038	0.144	220.0	0.038	0.038	0.036	0.024	lilibrium; hce $(P < 0)$ (referenc ever, in A 22). As pu	1822438,
WHR, afte	Effect estimate	0.131	0.108	0.087	- 0.130	- 0.155	-0.080	-0.088	0.110	- 0.086	- 0.023	0.117	- 0.320	- 0.075	- 0.079	-0.055	-0.335	0.134	0.058	-0.075	0.331	0.117	0.520	100.0 -	0.087	0.106	-0.100	-0.060	kage disequal significar r proxy SNP titions; how ap (release	/ SNP for rs
WC and	z	3401	3399	3453	3449 3454	3452	3452	3450	3453	3452	3445	3451	3451	3446	3451	3442	3452	3424	3415	3453	3441	3453	- 040	2445 2443	3453	3451	3454	3447	e; LD, lin w nomin e index of p popula of HapM n Lindgre	1; ^y Proxy
ed with	MAF	0.10	0.10	0.19	0.04	0.07	0.14	0.14	0.13	0.34	1.5.0	0.14	0.01	0.40	0.50	0.40	0.00	0.05	0.41	0.16	0.01	0.11	10.0	0.4-	0.12	0.12	0.12	0.44	mosome ion belo J HapMa t release SNP fron	794, r [±] =
associat	Minor/ major Allele	G/A	G/A	55	ע ר/ר	4/9	C7	C/T	55	۶ A	ס פ ש∕ף פ		ΥΥ Έ	5	G/A	C/A	T/C	T/C	АЛ	G/A	5	0 ý 0/0		- U/V	25	55	C/A	G/A	Chr, chrc f associat ithin 500 nic in CEL ed on tha 1; ^b Index	rs12814.
Is for loci	Strand	I	Ι	+ -	+ +	+ +	- 1	I	+	-	+ +	⊢ I	I	Ι	Ι	Ι	Ι	Ι	+	+	+	+ -	ł		I	Ι	+	- 1	base pair; vidence of ant SNP wi nonomorph ations base $1731, r^2 =$	xy SNP tor
an descent individuals for loci associated with WC and WHR, after adjustment for BMI	BP position	170635590	170635590	217887690	2046//12	165327216	52342972	52342972	64522218	64557121	1731874790	6867758	6728239	43866851	43872529	50862810	50795305	127271958	127275973	25642845	25721303	9771474 0756513	21000/2	20005590	57389169	52389169	27884183	28000939	ss index; BP, k Id indidicate e **Most signific 17071048 is m Build 36 imput SNP for rs101	5, r ² = 0.9; 'Pro
an desc	Chr	-	<u> </u>	, -,	- ^	5	m	m	Ω		Ωư	n v	0 0	9	9	9	9	9	9	7	7	∞ 0	o (7 5	1 1	12	22	22	ody ma es in bo .05/15). * note, rs esent in l al. ^a Proxy	59491696
from Europe	Most significant SNP**	rs6698987	rs6698987	rs4472763	rsz/8090 re6748091	rs6748091	rs4687612	rs4687612	rs17071048	rs4688486	rs1//1318	rs7768997	rs17142557	rs6905288	rs1358980	rs2744498	rs9473902	rs17054204	rs1930952	rs12533343	rs17152367	rs2409601	154041240	re1513771	rs17101993	rs17101993	rs469983	rs3788410	Study; BMI, E ratio. *P-valu s tested ($P < 0$ d instead. Of thus is not pr n Lindgren <i>et</i>	oxy SNP for r
r published loci	Phenotype	WC adj BMI	WHR adj BMI	WC adj BMI	WHK adj BINI	WHR adj BMI	WC adj BMI	WHR adj BMI	WC adj BMI	WHR adj BMI	WL adj bivli WHR adi BMI		WHR adi BMI	WC adj BMI	WHR adj BMI	WC adj BMI	WHR adj BMI	WC adj BMI	WHR adj BMI	WC adj BMI	WHR adj BMI	WC adj BMI			WC adi BMI	WHR adi BMI	WC adj BMI	WHR adj BMI	n Communities (HR, waist-to-hip st significant SNP in CEU were use Aap Build 36 and pplemented from	61681, <i>r</i> [±] = 1; ⁻ Pro
men fo	Chr	-		-	ç	٧	m		m	L	n	Ŷ	>	9		9		9		7		8	;	4	12	1	22		is Risk i rence; W er of mo: for data in HapA e was su	for rs68
Results in Hispanic women for published loci from Europea	In/near gene	DNM3-PIGC		LYPLAL 1	CRR14	+ 1900	NISCH-STAB1		ADAMTS9		CPEB4	I YRG	200	VEGFA		TFAP2B		RSP03		NFE2L3		MSRA	ואמסס רממדו	NI-102-2711	HOXC13		ZNRF3-KREMEN1		Abbreviations: ARIC, Atherosclerosis Risk in Communities Study; BMI, body mass index; BP, base pair; Chr, chromosome; LD, linkage disequilibrium; MAF, minor allele frequency; SNP, single-nucleotide polymorphism; WC, waist circumference; WHR, waist-to-hip ratio. *P-values in bold indidicate evidence of association below nominal significance (P < 0.05) for index or proxy SNPs (reference), and below a Bonferroni threshold for the number of most significant SNPs tested (P < 0.05/15). **Most significant SNP within 500 kb of the index or proxy SNP (reference). ¹ If pairwise LD information was unavailable in ARIC whites then HapMap 2 release 22 for data in CEU were used instead. Of note, rs17071048 is monomorphic in CEU HapMap populations; however, in ARIC Whites there was calculatable LD with rs5795735. ^{***} SNP, information was not available for this soft, the minor allele was supplemented from Lindgren <i>et al.</i> [*] Proxy SNP from Lindgren <i>et al.</i> , but proxy SNP from Heid <i>et al.</i> at r ² = 0.6; [*] Proxy SNP for rs1071731, r ² = 1; ^b index SNP from Lindgren <i>et al.</i> , but proxy SNP for rs4846567 from Heid <i>et al.</i> at r ² = 0.6; [*] Proxy SNP SNP SNP SNP SNP supplemented from Heid <i>et al.</i> at r ² = 0.6; [*] Proxy SNP SNP supplemented from Heid <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Heid <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6; [*] Proxy SNP supplemented from Lindgren <i>et al.</i> at r ² = 0.6	for rs1095252, r ² = 0.9; "Proxy SNP for rs6861681, r ² = 1; "Proxy SNP for rs9491696, r ² = 0.9; "Proxy SNP for rs12814794, r ² = 1; "Proxy SNP for rs1822438, r ² = 1.
Table 3b. Resu	Index or proxy SNP	rs2301453 ^a	-	rs2605100 ⁵	rc6717858 ^c		rs6784615		rs6795735			rs1294421	1711/7101	rs6905288		rs987237		rs1936805 ^e		rs1055144	44	rs545854''	יזעחדע נמרנייי	1512014794	rs1822438 ⁹	1	rs4823006		Abbreviations: polymorphism; Bonferroni thre Whites then Ha **rs7826222 wa SNP; informatio	for rs1095252,

7

Figure 1. Evidence for generalization of 16 previously identified obesity loci with BMI, WC and WHR in the WHI SHARe sample of Hispanic women. ¹In CEU, index SNPs or proxy SNPs in LD ($r^2 \ge 0.8$) below significance threshold of P < 0.05. ²Identified 'SNP of interest' in 1 Mb region is in LD at $r^2 \ge 0.2$ in CEU. *P*-value is Bonferroni-corrected significant and was at least one order of magnitude smaller than the *P*-value of the index SNP (or its proxy). ³Identified 'SNP of interest' in 1 Mb region is in LD at $r^2 < 0.2$ in CEU. After adjustment for the index SNP (or its proxy), the *P*-value decreased for the 'SNP of interest.' ⁴Identified 'SNP of interest' in 1 Mb region is in LD at $r^2 < 0.2$ in CEU. After adjustment for the index SNP (or its proxy), the *P*-value for the 'SNP of interest.' ⁴Identified 'SNP of interest' in 1 Mb region is in LD at $r^2 < 0.2$ in CEU. After adjustment for the index SNP (or its proxy), the *P*-value for the 'SNP of interest.' ⁴Identified 'SNP of interest' in 1 Mb region is in LD at $r^2 < 0.2$ in CEU. After adjustment for the index SNP (or its proxy), the *P*-value for the 'SNP of interest.' ⁴Identified 'SNP of interest' did not increase more than one order of magnitude. Abbreviations: BMI, body mass index; SNP, single nucleotide polymorphism; WC, waist circumference; WHR, waist-hip ratio.

population, using the index SNP (or proxy SNP in LD, $r^2 > 0.5$) identified in European descent populations, six loci (TFAP2B, ETV5, TMEM18, FAIM2, FTO and MC4R) also displayed directionally consistent and statistically significant associations with BMI in two large GWAS studies of BMI in African Americans and Asians.^{11,13} In addition, two other BMI loci displayed directionally consistent effect estimates for BMI in Hispanics (NUDT3 and KCTD15), but did not display statistical significance. These study findings demonstrate, for the first time, a general relevance of these BMI loci across multiple ancestrally diverse US minority populations. Although we provide some evidence for generalization, our sample size is small and further verification of these findings is necessary. Further, of note, our data demonstrate often substantial differences in allele frequencies between the reference HapMap CEU population and the female participants form the WHI SHARE study. Although this study only summarizes data from a single group of Hispanics, 43% with Mexican origins and, on average, 33% Native American ancestry (Supplementary Figure 1), these data do demonstrate the extensive diversity of the Hispanic population and the critical need for a greater focus on the genetic architecture in ethnic minority populations.

It is of interest to note that *FANCL* did not display any evidence for generalization in African and Asian ancestry populations. In Hispanics, we detected evidence for the proxy SNP and also for a possible independent signal, suggesting distinctions at this locus across ancestral populations.

There have been fewer genetic epidemiological studies of WC and WHR in ancestrally diverse populations—perhaps because waist traits are collected less frequently in large cohorts. One study in a sample of South Asian descent found that SNPs in LD with the identified index SNP (rs1095252) near the *GRB14* loci were associated with WHR and type 2 diabetes.⁴² In Hispanic women, we identified a possible index-dependent signal at this locus supporting the relevance of this locus across populations.

In this study, we were able to generalize or find evidence of association at 9 of 32 BMI loci (28%) and 7 of 15 WC/WHR loci (47%). Even among those loci that did not generalize in this study, the majority exhibited consistent directions of effect. The greater proportion of findings at central adiposity loci may likely be due to the greater power to detect associations. As shown in Supplementary Figures 2a–c, power calculations revealed disparate curves for overall (BMI) versus central adiposity

measures (WC or WHR), wherein we were underpowered (<80% power) to detect effects for BMI. Between WC and WHR, we were most powered to detect effects on WHR. Of note, these calculations were based on a range of allele frequencies and effect sizes, as well as the distribution of the phenotype in WHI SHARe. Among the three measurements, BMI had the highest level of variability (*z*-score = 5.2), followed by WC (*z*-score = 7.0) and WHR (*z*-score = 11.7), respectively. Similarly, the BMI findings were subjected to a higher penalty of Bonferroni correction (that is, lower alpha), because of the greater number of variants tested. We may also have had greater power to detect waist-related traits as WHI comprises women only, and we have recently established a stronger magnitude of genetic effects in women for many of the established waist variants.⁴³

National estimates from 1982 to 1984 from the Hispanic Health and Nutritional Examination Survey⁴⁴ were among the first to show that the burden of obesity may not be similar across all adult US Hispanics. More recent data from a diverse cohort study of four US communities strongly supports the possibility that there may be disparities in obesity among this ethic group by country of origin, with Puerto Rican women have the highest prevalence of obesity (51%) followed closely by Dominican (42%), Central American (42%) and Mexican women (42%).³ Unfortunately, although the WHI Hispanic sample included in WHI SHARe roughly corresponds to the distribution of US Hispanics recorded in the 2010 Census (63% of Hispanics of Mexican descent),³⁰ it likely does not capture the true diversity that constitutes this ethnicity nor does it imply that these results can be generalized to all US Hispanics. Moreover, the small sample size limited our ability to assess heterogeneity of effect size by population of origin. Future research should be designed and powered to investigate genetic effects across diverse Hispanic backgrounds.

Finally, our sample of primarily postmenopausal women may have been a limitation as there is evidence that genetic effects on adiposity vary substantially across the life course.^{45–47}

In turn, this study is strengthened by a number of factors. First, obesity-related racial/ethnic- and gender disparities exist among the largest US minority group—Hispanics^{48–51} and progress in the obesity field will only be made when all US populations are successfully interrogated. Therefore, our interrogation of established BMI and WC/WHR loci in an ancestrally diverse population with heightened disparities in disease risk is timely and of great public health significance. Second, to our knowledge this study constitutes

Table 4. Resu published in f	lts for conditi uropean des	ional i cent p	analyses of the populations o	Table 4. Results for conditional analyses of the most significant SNP. published in European descent populations or a proxy SNP thereof	ant SNP thereof	associa a	associated with BMI, WC and WHR, after adjustment for BMI, in Hispanic women before and after conditioning on the index SNP	WC and WF	HR, after	adjustm	lent for	BMI, in Hi	spanic v	vomen be	efore and	d after co	nditioni	ing on the i	index SNP
Phenotype	In/near gene	Chr	Chr Index or proxy SNP conditioned on	BP position	Minor/ major allele	MAF	Most significant SNP ^b	Position (in base pairs)	Minor/ major Allele	MAF	z	Beta	S.e.	P-value	z	Beta	S.e.	P-value	Type ^c
BMI BMI BM BMI WC adj BMI	FANCL ETV5 TFAP2B KCTD15 DNM3-	- 19 19	rs759250 rs1516728 rs9366426 rs11084753 rs2301453	59182657 187312585 22172618 39013977 170624790	A A A A A A A A A A A A A A A A A A A	0.18 0.37 0.39 0.34 0.38	rs4672266 rs7648336 rs2876611 rs8104262 rs6698987	58978503 187431942 22108317 38895287 170635590	A/G A/G A/G	0.34 0.26 0.01 0.01 0.10	3452 3465 3466 3466 3366	0.091 -0.091 -0.400 0.424 0.109	0.025 0.028 0.120 0.112 0.041	2.92E-04 1.14E-03 8.49E-04 1.65E-04 7.76E-03	3452 3465 3464 3466 3394	0.091 -0.090 -0.401 0.424 0.124	0.025 0.028 0.120 0.112 0.045	3.02E-04 1.22E-03 8.31E-04 1.67E-04 5.96E-03	Possible Possible Suggestive Possible Suggestive
WHR adj BMI WC adj BMI	PIGC GRB14 ADAMTS9	ωN	rs6717858 rs6795735	165247907 64680405	C7 C7	0.31 0.34	rs6748091 rs17071048 ^d	165327216 64522218	G/A C/T	0.07 0.13	3447 3453	-0.156		9.06E-04 3.05E-03	3447 3453	-0.150 0.117	0.050	2.88E-03 2.19E-03	Possible Possible
WHK adj BMI WC adj BMI WHR adj BMI WC adj BMI	LY86 MSRA	8 0	rs1294421 rs545854	6688148 9897490	A/C C/G	0.49 0.23	rs4088480 rs2768997 rs17142557 rs2409601	0455/121 6862258 6728239 9771474	A/G A/T A/T	0.34 0.14 0.01 0.11	3452 3451 3451 3439	- 0.086 0.117 - 0.320 0.118	0.026 0.034 0.106 0.038	9.14E-04 6.63E-04 2.55E-03 2.22E-03	3452 3451 3451 3439	- 0.088 0.117 - 0.320 0.120	0.02/ 0.034 0.106 0.039	9.59E-04 6.75E-04 2.52E-03 1.89E-03	Possible Suggestive
Abbreviations: / hip ratio. ^a Inde appropriate). ^b N therefore none with rs6795735.	ARIC, Atheroso (2x (or proxy) Most significan are categorize	cleros SNP a tr SNP ed as k	is Risk in Comn ind most signi vithin 500 kb veing unlikely t	Abbreviations: ARIC, Atherosclerosis Risk in Communities, BMI, body mass index; Chr, chromosome; SNP, single-nucleotide polymorphisms; MAF, minor allele frequency; WC, waist circumference; WHR, waist-to- hip ratio. ^a Index (or proxy) SNP and most significant SNP were considered independent per <i>i</i> ² < 0.2 between WHI SHARe Hispanic women and ARIC Study Whites (or CEU HapMap populations, when appropriate). ^b Most significant SNP within 500 kb of the index or proxy SNP (reference). ^c No loci showed more than one order of magnitude increase in <i>P</i> -value after adjustment for the index or proxy SNP and therefore none are categorized as being unlikely to have a secondary signal. ^d rs17071048 is monomorphic in CEU HapMap populations; however, in ARIC Whites there was low linkage disequilibrium (<i>i</i> ² < 0.001) with rs6795735.	ody mas e consic proxy S dary sigi	ss index; dered ir NP (refe nal. ^d rs1	s index; Chr, chromosome; SNP, single-nucleotide polymorphisms; MAF, minor allele frequency; WC, waist circumference; WHR, waist-to- lered independent per $\vec{r} < 0.2$ between WHI SHARe Hispanic women and ARIC Study Whites (or CEU HapMap populations, when NP (reference). 'No loci showed more than one order of magnitude increase in <i>P</i> -value after adjustment for the index or proxy SNP and al. ^d rs17071048 is monomorphic in CEU HapMap populations; however, in ARIC Whites there was low linkage disequilibrium ($\vec{r}^2 < 0.001$)	ome; SNP, sir er r ² < 0.2 b¢ ci showed m nomorphic ii	ngle-nucl etween V ore than in CEU Ha	eotide p WHI SHA one ord ³pMap p	olymorp .Re Hisp. er of ma opulatio	hisms; M ^A anic wom gnitude ir ns; howev	F, minor en and ncrease i er, in AF	allele frec ARIC Stuc n <i>P</i> -value	quency; \ dy White after adji there wa	VC, waist s (or CEL ustment fr is low link	circumfe J HapMa or the in age dise	erence; WHF ap populati ndex or prox	3, waist-to- ons, when by SNP and $(r^2 < 0.001)$

npg

the first attempt in the scientific literature to perform a large comprehensive study of multiple adiposity phenotypes among a sample of Hispanic individuals. Although previous generalization studies have been published among Hispanics, they were largely conducted in the context of candidate gene studies and did not evaluate well established GWAS variants.

In summary, our findings suggest similar genetic influences on body size and shape across non-Hispanic and Hispanic descent populations, by illustrating associations at nine BMI loci and seven WC/WHR loci previously reported in European descent populations. We also provide tentative evidence that several of the BMI and WC loci harbor multiple independent signals, which has been shown to increase the heritability explained for complex traits across populations. Nonetheless, replication of these signals in larger Hispanic studies is required, as well as GWAS studies to determine if novel obesity loci can be mapped in Hispanic populations.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health, US Department of Health and Human Services (grants 5T32HL007055 to LF-R, 5K07CA136969 to HMO-B). WHI SHARe was also supported by the National Heart, Lung and Blood Institute through the following contracts: N01WH22110, 24152, 32100–2, 32105–6, 32108–9, 32111–13, 32115, 32118–9, 32122, 42107–26, 42129–32 and 44221. WHI has approved the manuscript, which was prepared in collaboration with WHI investigators.

AUTHOR CONTRIBUTIONS

MG, LF-R, KM and KEN defined the study approach and aims; MG, LF-R and KM completed the data analysis; MG, LF-R and KEN contributed to the interpretation and presentation of the study findings; all other authors reviewed the manuscript and provided their critical feedback and approval.

REFERENCES

- 1 Ennis SR, Rios-Vargas M, Albert NG. *The Hispanic Population: 2010, in 2010 Census Briefs, US Census, Editor,* 2011 US Dept. of Commerce: Washington, DC, USA.
- 2 Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012; 307: 491–497.
- 3 Daviglus ML, Talavera GA, Aviles-Santa ML, Allison M, Cai J, Criqui MH *et al.* Prevalence of major cardiovascular risk factors and cardiovascular diseases among Hispanic/Latino individuals of diverse backgrounds in the United States. *JAMA* 2012; **308**: 1775–1784.
- 4 Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU *et al.* Association analyses of 249 796 individuals reveal 18 new loci associated with body mass index. *Nat Genet* 2010; **42**: 937–948.
- 5 Thorleifsson G, Walters G, Gudbjartsson D, Steinthorsdottir V, Sulem P, Helgadottir A *et al.* Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. *Nat Genet* 2009; **41**: 18–24.
- 6 Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM *et al.* Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. *Nat Genet* 2009; **41**: 25–34.
- 7 Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 2010; 42: 949–960.
- 8 Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L *et al.* Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. *PLoS Genet* 2009; **5**: e1000508.
- 9 Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N *et al.* Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. *Nat Genet* 2012; **44**: 302–306.
- 10 Wang J, Mei H, Chen W, Jiang Y, Sun W, Li F et al. Study of eight GWAS-identified common variants for association with obesity-related indices in Chinese children at puberty. Int J Obes (Lond) 2012; 36: 542–547.
- 11 Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet 2012; 44: 307–311.

- 12 Ng MC, Hester JM, Wing MR, Li J, Xu J, Hicks PJ et al. Genome-wide association of BMI in African Americans. Obesity (Silver Spring) 2012; 20: 622-627.
- 13 Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange J A et al. A metaanalysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet 2013; 45: 690-696.
- 14 Wing MR, Ziegler J, Langefeld CD, Ng MC, Haffner SM, Norris JM et al. Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study Hum Genet 2009: 125: 615-626
- 15 Anderson G, Cummings S, Freedman LS, Furberg C, Henderson M, Johnson SR et al. Design of the Women's Health Initiative Clinical Trial and Observational Study. Controlled Clinical Trials 1998: 19: 61-109.
- 16 Hays J, Hunt JR, Hubbell FA, Anderson GL, Limacher M, Allen C et al. The Women's Health Initiative recruitment methods and results. Ann Epidemiol 2003: 13(9 Suppl): S18-S77.
- 17 Chen CT, Fernandez-Rhodes L, Brzyski RG, Carlson CS, Chen Z, Heiss G et al. Replication of loci influencing ages at menarche and menopause in Hispanic women: the Women's Health Initiative SHARe Study. Hum Mol Genet 2012; 21: 1419-1432
- 18 Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet 2006: 2: e190.
- 19 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904-909.
- 20 International HapMap, C. The International HapMap Project. Nature 2003; 426: 789-796
- 21 Thorisson GA, Smith AV, Krishnan L, Stein LD. The International HapMap Project Web site. Genome Res 2005; 15: 1592-1593.
- 22 Cavalli-Sforza LL. The Human Genome Diversity Project: past, present and future. Nat Rev Genet 2005: 6: 333-340.
- 23 Buchanan CC, Torstenson ES, Bush WS, Ritchie MD. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data. J Am Med Inform Assoc 2012; 19: 289-294.
- 24 Palmer ND, Lehtinen AB, Langefeld CD, Campbell JK, Haffner SM, Norris JM et al. Association of TCF7L2 gene polymorphisms with reduced acute insulin response in Hispanic Americans. J Clin Endocrinol Metab 2008; 93: 304-309.
- 25 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559-575.
- 26 Committee, WE, Physical status: the use and interpretation of anthropometry, Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 1995; 854: 1-452.
- Consultation, WE. Appropriate body-mass index for Asian populations and its 27 implications for policy and intervention strategies. Lancet 2004; 363: 157-163.
- 28 World Health Organization (WHO). Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8-11 December 2008. WHO: Geneva, Switzerland, 2011.
- 29 Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D et al. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet 2005; 50: 283-292.
- 30 Tsukada S, Tanaka Y, Maegawa H, Kashiwagi A, Kawamori R, Maeda S. Intronic polymorphisms within TFAP2B regulate transcriptional activity and affect adipocytokine gene expression in differentiated adipocytes. Mol Endocrinol 2006; 20: 1104-1111
- 31 Yeung E, Qi L, Hu FB, Zhang C. Novel abdominal adiposity genes and the risk of type 2 diabetes: findings from two prospective cohorts. Int J Mol Epidemiol Genet 2011: 2: 138-144
- 32 NCBI. Entrez gene: MSRA methionine sulfoxide reductase A. 2012.
- 33 Styskal J, Nwagwu FA, Watkins YN, Liang H, Richardson A, Musi N et al. Methionine sulfoxide reductase A affects insulin resistance by protecting insulin receptor function. Free Radic Biol Med 2012; 56: 123-132.

- 34 Inoue N, Watanabe R, Takeda J, Kinoshita T. PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun 1996; 226: 193-199.
- Orth JB, McNiven MA. Dynamin at the actin-membrane interface. Curr Opin Cell 35 Biol 2003: 15: 31-39.
- 36 Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J et al. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A. PIG-H, PIG-C and GPI1. EMBO J 1998; 17: 877-885.
- Schmid PM, Heid I, Buechler C, Steege A, Resch M, Birner C et al. Expression of 37 fourteen novel obesity-related genes in Zucker diabetic fatty rats. Cardiovasc Diabetol 2012; 11: 48.
- 38 Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40: 638-645.
- 39 Boesgaard TW, Gjesing AP, Grarup N, Rutanen J, Jansson PA, Hribal ML et al. Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients-EUGENE2 study. PLoS One 2009; 4: e7236.
- 40 Depetris RS, Hu J, Gimpelevich I, Holt LJ, Daly RJ, Hubbard SR. Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Mol Cell 2005; 20: 325-333.
- 41 Holt LJ, Siddle K. Grb10 and Grb14: enigmatic regulators of insulin action--and more? Biochem J 2005; 388(Pt 2): 393-406.
- 42 Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 2011; 43: 984-989.
- 43 Randall J, Winkler TW, Kutalik Z, Berndt SI, Jackson AU, Monda KL. Sex-stratified genome-wide association studies including 270 000 individuals show sexual dimorphism in genetic loci for anthropometric traits. Plos Genet 2013; 9: e1003500.
- Aponte J. Diabetes-related risk factors across Hispanic subgroups in the Hispanic 44 health and nutritional examination survey (1982-1984). Public Health Nurs 2009; 26: 23-38.
- 45 Graff M, North KE, Mohlke KL, Lange LA, Luo J, Harris KM et al. Estimation of genetic effects on BMI during adolescence in an ethnically diverse cohort: the National Longitudinal Study of Adolescent Health. Nutri Diabetes 2012; 2· e47
- 46 Hallman DM, Friedel VC, Eissa MA, Boerwinkle E, Huber Jr JC, Harrist RB et al. The association of variants in the FTO gene with longitudinal body mass index profiles in non-Hispanic white children and adolescents. Int J Obes (Lond) 2012; 36: 61-68.
- 47 Hardy R, Wills AK, Wong A, Elks CE, Wareham NJ, Loos RJ et al. Life course variations in the associations between FTO and MC4R gene variants and body size. Hum Mol Genet 2010; 19: 545-552.
- 48 Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM, Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 2006; 295: 1549-1555.
- 49 Ogden CL, Lamb MM, Carroll MD, Flegal KM. Obesity and socioeconomic status in adults: United States, 2005-2008. NCHS Data Brief 2010 1-8.
- 50 Flegal KM, Ezzati TM, Harris MI, Haynes SG, Juarez RZ, Knowler WC et al. Prevalence of diabetes in Mexican Americans, Cubans, and Puerto Ricans from the Hispanic Health and Nutrition Examination Survey, 1982-1984. Diabetes Care 1991; 14·628-638
- 51 Flegal KM, Ogden CL, Yanovski JA, Freedman DS, Shepherd JA, Graubard BI et al. High adiposity and high body mass index-for-age in US children and adolescents overall and by race-ethnic group. Am J Clin Nutr 2010; 91: 1020-1026.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Supplementary Information accompanies this paper on the Nutrition & Diabetes website (http://www.nature.com/nutd)

10