18 research outputs found

    Case Report: An MRI Traumatic Brain Injury Longitudinal Case Study at 7 Tesla: Pre- and Post-injury Structural Network and Volumetric Reorganization and Recovery.

    Get PDF
    Importance: A significant limitation of many neuroimaging studies examining mild traumatic brain injury (mTBI) is the unavailability of pre-injury data. Objective: We therefore aimed to utilize pre-injury ultra-high field brain MRI and compare a collection of neuroimaging metrics pre- and post-injury to determine mTBI related changes and evaluate the enhanced sensitivity of high-resolution MRI. Design: In the present case study, we leveraged multi-modal 7 Tesla MRI data acquired at two timepoints prior to mTBI (23 and 12 months prior to injury), and at two timepoints post-injury (2 weeks and 8 months after injury) to examine how a right parietal bone impact affects gross brain structure, subcortical volumetrics, microstructural order, and connectivity. Setting: This research was carried out as a case investigation at a single primary care site. Participants: The case participant was a 38-year-old female selected for inclusion based on a mTBI where a right parietal impact was sustained. Main outcomes: The main outcome measurements of this investigation were high spatial resolution structural brain metrics including volumetric assessment and connection density of the white matter connectome. Results: At the first scan timepoint post-injury, the cortical gray matter and cerebral white matter in both hemispheres appeared to be volumetrically reduced compared to the pre-injury and subsequent post-injury scans. Connectomes produced from whole-brain diffusion-weighted probabilistic tractography showed a widespread decrease in connectivity after trauma when comparing mean post-injury and mean pre-injury connection densities. Findings of reduced fractional anisotropy in the cerebral white matter of both hemispheres at post-injury time point 1 supports reduced connection density at a microstructural level. Trauma-related alterations to whole-brain connection density were markedly reduced at the final scan timepoint, consistent with symptom resolution. Conclusions and Relevance: This case study investigates the structural effects of traumatic brain injury for the first time using pre-injury and post-injury 7 Tesla MRI longitudinal data. We report findings of initial volumetric changes, decreased structural connectivity and reduced microstructural order that appear to return to baseline 8 months post-injury, demonstrating in-depth metrics of physiological recovery. Default mode, salience, occipital, and executive function network alterations reflect patient-reported hypersomnolence, reduced cognitive processing speed and dizziness

    Abnormal auditory tonotopy in patients with schizophrenia

    Get PDF
    Auditory hallucinations are among the most prevalent and most distressing symptoms of schizophrenia. Despite significant progress, it is still unclear whether auditory hallucinations arise from abnormalities in primary sensory processing or whether they represent failures of higher-order functions. To address this knowledge gap, we capitalized on the increased spatial resolution afforded by ultra-high field imaging at 7 Tesla to investigate the tonotopic organization of the auditory cortex in patients with schizophrenia with a history of recurrent hallucinations. Tonotopy is a fundamental feature of the functional organization of the auditory cortex that is established very early in development and predates the onset of symptoms by decades. Compared to healthy participants, patients showed abnormally increased activation and altered tonotopic organization of the auditory cortex during a purely perceptual task, which involved passive listening to tones across a range of frequencies (88-8000 Hz). These findings suggest that the predisposition to auditory hallucinations is likely to be predicated on abnormalities in the functional organization of the auditory cortex and which may serve as a biomarker for the early identification of vulnerable individuals

    Leveraging high-resolution 7-tesla MRI to derive quantitative metrics for the trigeminal nerve and subnuclei of limbic structures in trigeminal neuralgia

    Full text link
    Background: Trigeminal Neuralgia (TN) is a chronic neurological disease that is strongly associated with neurovascular compression (NVC) of the trigeminal nerve near its root entry zone. The trigeminal nerve at the site of NVC has been extensively studied but limbic structures that are potentially involved in TN have not been adequately characterized. Specifically, the hippocampus is a stress-sensitive region which may be structurally impacted by chronic TN pain. As the center of the emotion-related network, the amygdala is closely related to stress regulation and may be associated with TN pain as well. The thalamus, which is involved in the trigeminal sensory pathway and nociception, may play a role in pain processing of TN. The objective of this study was to assess structural alterations in the trigeminal nerve and subregions of the hippocampus, amygdala, and thalamus in TN patients using ultra-high field MRI and examine quantitative differences in these structures compared with healthy controls. Methods: Thirteen TN patients and 13 matched controls were scanned at 7-Tesla MRI with high resolution, T1- weighted imaging. Nerve cross sectional area (CSA) was measured and an automated algorithm was used to segment hippocampal, amygdaloid, and thalamic subregions. Nerve CSA and limbic structure subnuclei volumes were compared between TN patients and controls. Results: CSA of the posterior cisternal nerve on the symptomatic side was smaller in patients (3.75mm2) compared with side-matched controls (5.77mm2, p = 0.006). In TN patients, basal subnucleus amygdala volume (0.347mm3) was reduced on the symptomatic side compared with controls (0.401mm3, p = 0.025) and the paralaminar subnucleus volume (0.04mm3) was also reduced on the symptomatic side compared with controls (0.05mm3, p = 0.009). The central lateral thalamic subnucleus was larger in TN patients on both the symptomatic side (0.033mm3) and asymptomatic side (0.035mm3), compared with the corresponding sides in controls (0.025mm3 on both sides, p = 0.048 and p = 0.003 respectively). The inferior and lateral pulvinar thalamic subnuclei were both reduced in TN patients on the symptomatic side (0.2mm3 and 0.17mm3 respectively) compared to controls (0.23mm3, p = 0.04 and 0.18 mm3, p = 0.04 respectively). No significant findings were found in the hippocampal subfields analyzed. Conclusions: These findings, generated through a highly sensitive 7 T MRI protocol, provide compelling support for the theory that TN neurobiology is a complex amalgamation of local structural changes within the trigeminal nerve and structural alterations in subnuclei of limbic structures directly and indirectly involved in nociception and pain processing

    Gut microbiome association with brain imaging markers, APOE genotype, calcium and vegetable intakes, and obesity in healthy aging adults

    Get PDF
    IntroductionAdvanced age is a significant factor in changes to brain physiology and cognitive functions. Recent research has highlighted the critical role of the gut microbiome in modulating brain functions during aging, which can be influenced by various factors such as apolipoprotein E (APOE) genetic variance, body mass index (BMI), diabetes, and dietary intake. However, the associations between the gut microbiome and these factors, as well as brain structural, vascular, and metabolic imaging markers, have not been well explored.MethodsWe recruited 30 community dwelling older adults between age 55-85 in Kentucky. We collected the medical history from the electronic health record as well as the Dietary Screener Questionnaire. We performed APOE genotyping with an oral swab, gut microbiome analysis using metagenomics sequencing, and brain structural, vascular, and metabolic imaging using MRI.ResultsIndividuals with APOE e2 and APOE e4 genotypes had distinct microbiota composition, and higher level of pro-inflammatory microbiota were associated higher BMI and diabetes. In contrast, calcium- and vegetable-rich diets were associated with microbiota that produced short chain fatty acids leading to an anti-inflammatory state. We also found that important gut microbial butyrate producers were correlated with the volume of the thalamus and corpus callosum, which are regions of the brain responsible for relaying and processing information. Additionally, putative proinflammatory species were negatively correlated with GABA production, an inhibitory neurotransmitter. Furthermore, we observed that the relative abundance of bacteria from the family Eggerthellaceae, equol producers, was correlated with white matter integrity in tracts connecting the brain regions related to language, memory, and learning.DiscussionThese findings highlight the importance of gut microbiome association with brain health in aging population and could have important implications aimed at optimizing healthy brain aging through precision prebiotic, probiotic or dietary interventions

    MASE-sLASER, a short-TE, matched chemical shift displacement error sequence for single-voxel spectroscopy at ultrahigh field

    No full text
    Contains fulltext : 192702.pdf (publisher's version ) (Closed access)15 p

    Segmentation and quantification of venous structures and perivascular spaces in the thalamus in epilepsy using 7 Tesla MRI

    No full text
    Background and purpose: Epilepsy is a complex neurological disorder affecting 50 million people worldwide. Persistent seizures may correlate with neural network, microstructural, and vascular changes within the thalamus. These thalamic changes may result from seizure activity or broader alterations involving neuronal vasculature and neuroinflammatory processes linked to glymphatic drainage. Improved resolution with Ultra-high field (UHF) magnetic resonance imaging (MRI) may be useful in identifying possible thalamic vascular abnormalities not otherwise detectable at lower field strengths. Materials and methods: We outline a novel method which leverages UHF neuroimaging for detection and quantification of vessels and perivascular spaces (PVS) within the thalamus in 25 epilepsy patients and 16 controls, to uncover possible underlying imaging biomarkers of epilepsy. In our analysis, we optimize a MATLAB-based Frangi-based detection tool called Perivascular Space Semi-Automated Segmentation (PVSSAS) to detect thalamic PVSs, and additionally use a second Frangi-based segmentation tool method to automate detection of vascular structures in the thalamus. The resulting PVS and vessel masks were used to quantify differences in the number of vessels, PVS, overlaps, and number of PVS overlaps per vessel detected between groups, using a Hessian detection filter linked on an 18-connected network. Results: We found significantly more thalamic PVS (p = 0.0307) and a significant increase in the number of thalamic vessels (p = 0.038) in patients compared to controls. Conclusion: Here we have developed a novel process which leverages UHF MRI to quantify and detect thalamic vessels and PVS that may provide a potential neuroimaging biomarker of epilepsy. Statement of Significance: We use 7T, ultra-high field MRI and employed an innovative combination of semi-automated perivascular space segmentation and automated vessel segmentation to visualize and quantify vessels and perivascular spaces (PVS) within the thalamus, a highly cited region of interest in epilepsy. To our knowledge, this is the first study to semi-automatically visualize and segment PVS in the thalamus and automatically detect thalamic vessels. We uncovered detectable differences in thalamic vasculature and PVS. These findings suggests that increases in the number of thalamic PVS and vessels may be a potential neuroimaging biomarker in epilepsy. This tool may be useful in the detection of subtle vascular changes in other regions of the brain related to epilepsy or can be employed in other neurological conditions
    corecore