3,547 research outputs found

    Multipliers for p-Bessel sequences in Banach spaces

    Full text link
    Multipliers have been recently introduced as operators for Bessel sequences and frames in Hilbert spaces. These operators are defined by a fixed multiplication pattern (the symbol) which is inserted between the analysis and synthesis operators. In this paper, we will generalize the concept of Bessel multipliers for p-Bessel and p-Riesz sequences in Banach spaces. It will be shown that bounded symbols lead to bounded operators. Symbols converging to zero induce compact operators. Furthermore, we will give sufficient conditions for multipliers to be nuclear operators. Finally, we will show the continuous dependency of the multipliers on their parameters.Comment: 17 page

    Frame-Related Sequences in Chains and Scales of Hilbert Spaces

    Get PDF
    Frames for Hilbert spaces are interesting for mathematicians but also important for applications in, e.g., signal analysis and physics. In both mathematics and physics, it is natural to consider a full scale of spaces, and not only a single one. In this paper, we study how certain frame-related properties of a certain sequence in one of the spaces, such as completeness or the property of being a (semi-) frame, propagate to the other ones in a scale of Hilbert spaces. We link that to the properties of the respective frame-related operators, such as analysis or synthesis. We start with a detailed survey of the theory of Hilbert chains. Using a canonical isomorphism, the properties of frame sequences are naturally preserved between different spaces. We also show that some results can be transferred if the original sequence is considered—in particular, that the upper semi-frame property is kept in larger spaces, while the lower one is kept in smaller ones. This leads to a negative result: a sequence can never be a frame for two Hilbert spaces of the scale if the scale is non-trivial, i.e., if the spaces are not equal

    Epoch Dependent Dark Energy

    Get PDF
    We present a model in which the equation of state parameter w approaches -1 near a particular value of z, and has significant negative values in a restricted range of z. For example, one can have w ~ -1 near z = 1, and w > -0.2 from z = 0 to z = 0.3, and for z > 9. The ingredients of the model are neutral fermions (which may be neutrinos, neutralinos, etc) which are very weakly coupled to a light scalar field. This model emphasises the importance of the proposed studies of the properties of dark energy into the region z > 1.Comment: 7pp., 2 figs. Invited talk at the 5th Int'l. Wkshp. on the Dark Side of the Universe, 1-5 June 2009 Melbourne, DSU09; to appear in the proceeding

    Simulating noisy quantum protocols with quantum trajectories

    Full text link
    The theory of quantum trajectories is applied to simulate the effects of quantum noise sources induced by the environment on quantum information protocols. We study two models that generalize single qubit noise channels like amplitude damping and phase flip to the many-qubit situation. We calculate the fidelity of quantum information transmission through a chaotic channel using the teleportation scheme with different environments. In this example, we analyze the role played by the kind of collective noise suffered by the quantum processor during its operation. We also investigate the stability of a quantum algorithm simulating the quantum dynamics of a paradigmatic model of chaos, the baker's map. Our results demonstrate that, using the quantum trajectories approach, we are able to simulate quantum protocols in the presence of noise and with large system sizes of more than 20 qubits.Comment: 11 pages, 7 fig

    Unusual Higgs or Supersymmetry from Natural Electroweak Symmetry Breaking

    Full text link
    This review provides an elementary discussion of electroweak symmetry breaking in the minimal and the next-to-minimal supersymmetric models with the focus on the fine-tuning problem -- the tension between natural electroweak symmetry breaking and the direct search limit on the Higgs boson mass. Two generic solutions of the fine-tuning problem are discussed in detail: models with unusual Higgs decays; and models with unusual pattern of soft supersymmetry breaking parameters.Comment: 23 pages, 6 figures; invited review by MPL

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Detecting a light Higgs boson at the Fermilab Tevatron through enhanced decays to photon pairs

    Full text link
    We analyze the prospects of the Tevatron for finding a Higgs boson in the two photon decay mode. We conclude that the Standard Model (SM) Higgs boson will likely not be discovered in this mode. However, we motivate several theories beyond the SM, including the MSSM, that predict a Higgs boson with enhanced branching fractions into photons, and calculate the luminosity needed to discover a general Higgs boson at the Tevatron by a two-photon invariant mass peak at large transverse momentum. We find that a high luminosity Tevatron will play a significant role in discovering or constraining these theories.Comment: 20 pages, latex, 5 figure

    Monte Carlo simulations of random copolymers at a selective interface

    Full text link
    We investigate numerically using the bond--fluctuation model the adsorption of a random AB--copolymer at the interface between two solvents. From our results we infer several scaling relations: the radius of gyration of the copolymer in the direction perpendicular to the interface (RgzR_{gz}) scales with χ\chi, the interfacial selectivity strength, as Rgz=Nνf(Nχ)R_{gz}=N^{\nu}f(\sqrt{N}\chi) where ν\nu is the usual Flory exponent and NN is the copolymer's length; furthermore the monomer density at the interface scales as χ2ν\chi^{2\nu} for small χ\chi. We also determine numerically the monomer densities in the two solvents and discuss their dependence on the distance from the interface.Comment: Latex text file appended with figures.tar.g

    Semiclassical properties and chaos degree for the quantum baker's map

    Get PDF
    We study the chaotic behaviour and the quantum-classical correspondence for the baker's map. Correspondence between quantum and classical expectation values is investigated and it is numerically shown that it is lost at the logarithmic timescale. The quantum chaos degree is computed and it is demonstrated that it describes the chaotic features of the model. The correspondence between classical and quantum chaos degrees is considered.Comment: 30 pages, 4 figures, accepted for publication in J. Math. Phy

    Movie Induced Tourism and Its Effects on Settlements, a Literature Study

    Get PDF
    Even though movie tourism as a whole is an area that is somewhat hard to study and measure, it is one of the most interestingly developing branches of tourism, that is aiming for special consumer segments. The former being highlighted by having most related studies attempting to measure the effects of single movies, thus having a hard time establishing a general picture about the consumers that are more keen to movie induced tourism
    corecore