24 research outputs found

    Lysophosphatidic Acid Induces Neointima Formation Through PPARγ Activation

    Get PDF
    Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor–like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)γ antagonist GW9662 and mimicked by PPARγ agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine. In contrast, stearoyl-oxovaleryl phosphatidylcholine, a PPARα agonist and polypeptide epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor failed to elicit neointima. The structure-activity relationship for neointima induction by LPA analogs in vivo is identical to that of PPARγ activation in vitro and disparate from that of LPA G protein–coupled receptor activation. Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662. These results suggest that selected LPA analogs are important novel endogenous PPARγ ligands capable of mediating vascular remodeling and that activation of the nuclear transcription factor PPARγ is both necessary and sufficient for neointima formation by components of oxidized low density lipoprotein

    The autotaxin-LPA2 GPCR axis is modulated by γ-irradiation and facilitates DNA damage repair

    Get PDF
    In this study we characterized the effects of radiation injury on the expression and function of the autotaxin (ATX)-LPA2 GPCR axis. In IEC-6 crypt cells and jejunum enteroids quantitative RT-PCR showed a time- and dose-dependent upregulation of lpa2 in response to γ-irradiation that was abolished by mutation of the NF-κB site in the lpa2 promoter or by inhibition of ATM/ATR kinases with CGK-733, suggesting that lpa2 is a DNA damage response gene upregulated by ATM via NF-κB. The resolution kinetics of the DNA damage marker γ-H2AX in LPA-treated IEC-6 cells exposed to γ-irradiation was accelerated compared to vehicle, whereas pharmacological inhibition of LPA2 delayed the resolution of γ-H2AX. In LPA2-reconstituted MEF cells lacking LPA1&3 the levels of γ-H2AX decreased rapidly, whereas in Vector MEF were high and remained sustained. Inhibition of ERK1&2 or PI3K/AKT signaling axis by pertussis toxin or the C311A/C314A/L351A mutation in the C-terminus of LPA2 abrogated the effect of LPA on DNA repair. LPA2 transcripts in Lin(-)Sca-1(+)c-Kit(+) enriched for bone marrow stem cells were 27- and 5-fold higher than in common myeloid or lymphoid progenitors, respectively. Furthermore, after irradiation higher residual γ-H2AX levels were detected in the bone marrow or jejunum of irradiated LPA2-KO mice compared to WT mice. We found that γ-irradiation increases plasma ATX activity and LPA level that is in part due to the previously established radiation-induced upregulation of TNFα. These findings identify ATX and LPA2 as radiation-regulated genes that appear to play a physiological role in DNA repair

    Paneth cell dysfunction in radiation injury and radio-mitigation by human α-defensin 5

    Get PDF
    IntroductionThe mechanism underlying radiation-induced gut microbiota dysbiosis is undefined. This study examined the effect of radiation on the intestinal Paneth cell α-defensin expression and its impact on microbiota composition and mucosal tissue injury and evaluated the radio-mitigative effect of human α-defensin 5 (HD5).MethodsAdult mice were subjected to total body irradiation, and Paneth cell α-defensin expression was evaluated by measuring α-defensin mRNA by RT-PCR and α-defensin peptide levels by mass spectrometry. Vascular-to-luminal flux of FITC-inulin was measured to evaluate intestinal mucosal permeability and endotoxemia by measuring plasma lipopolysaccharide. HD5 was administered in a liquid diet 24 hours before or after irradiation. Gut microbiota was analyzed by 16S rRNA sequencing. Intestinal epithelial junctions were analyzed by immunofluorescence confocal microscopy and mucosal inflammatory response by cytokine expression. Systemic inflammation was evaluated by measuring plasma cytokine levels.ResultsIonizing radiation reduced the Paneth cell α-defensin expression and depleted α-defensin peptides in the intestinal lumen. α-Defensin down-regulation was associated with the time-dependent alteration of gut microbiota composition, increased gut permeability, and endotoxemia. Administration of human α-defensin 5 (HD5) in the diet 24 hours before irradiation (prophylactic) significantly blocked radiation-induced gut microbiota dysbiosis, disruption of intestinal epithelial tight junction and adherens junction, mucosal barrier dysfunction, and mucosal inflammatory response. HD5, administered 24 hours after irradiation (treatment), reversed radiation-induced microbiota dysbiosis, tight junction and adherens junction disruption, and barrier dysfunction. Furthermore, HD5 treatment also prevents and reverses radiation-induced endotoxemia and systemic inflammation.ConclusionThese data demonstrate that radiation induces Paneth cell dysfunction in the intestine, and HD5 feeding prevents and mitigates radiation-induced intestinal mucosal injury, endotoxemia, and systemic inflammation

    The Replication Database:Documenting the Replicability of Psychological Science

    Get PDF
    In psychological science, replicability—repeating a study with a new sample achieving consistent results (Parsons et al., 2022)—is critical for affirming the validity of scientific findings. Despite its importance, replication efforts are few and far between in psychological science with many attempts failing to corroborate past findings. This scarcity, compounded by the difficulty in accessing replication data, jeopardizes the efficient allocation of research resources and impedes scientific advancement. Addressing this crucial gap, we present the Replication Database (https://forrt-replications.shinyapps.io/fred_explorer), a novel platform hosting 1,239 original findings paired with replication findings. The infrastructure of this database allows researchers to submit, access, and engage with replication findings. The database makes replications visible, easily findable via a graphical user interface, and tracks replication rates across various factors, such as publication year or journal. This will facilitate future efforts to evaluate the robustness of psychological research

    Fibroblast Specific Expression of AC6 Enhances ß-Adrenergic and Prostacyclin Signaling and Blunts Bleomycin-Induced Pulmonary Fibrosis

    No full text
    Pulmonary fibroblasts regulate extracellular matrix production and degradation and are critical in maintenance of lung structure, function, and repair, but they also play a central role in lung fibrosis. cAMP-elevating agents inhibit cytokine- and growth factor-stimulated myofibroblast differentiation and collagen synthesis in pulmonary fibroblasts. In the present study, we overexpressed adenylyl cyclase 6 (AC6) in pulmonary fibroblasts and measured cAMP production and collagen synthesis. AC6 overexpression enhanced cAMP production and the inhibition of collagen synthesis mediated by isoproterenol and beraprost, but not the responses to butaprost or PGE2. To examine if increased AC6 expression would impact the development of fibrosis in an animal model, we generated transgenic mice that overexpress AC6 under a fibroblast-specific promoter, FTS1. Lung fibrosis was induced in FTS1-AC6+/− mice and littermate controls by intratracheal instillation of saline or bleomycin. Wild-type mice treated with bleomycin showed extensive peribronchial and interstitial fibrosis and collagen deposition. By contrast, FTS1-AC6+/− mice displayed decreased fibrotic development, lymphocyte infiltration (as determined by pathological scoring), and lung collagen content. Thus, AC6 overexpression inhibits fibrogenesis in the lung by reducing pulmonary fibroblast-mediated collagen synthesis and myofibroblast differentiation. Because AC6 overexpression does not lead to enhanced basal or PGE2-stimulated levels of cAMP, we conclude that endogenous catecholamines or prostacyclin is produced during bleomycin-induced lung fibrosis and that these signals have antifibrotic potential

    The Lysophosphatidic Acid Type 2 Receptor Is Required for Protection Against Radiation-Induced Intestinal Injury

    No full text
    Background & Aims: We recently identified lysophosphatidic acid (LPA) as a potent antiapoptotic agent for the intestinal epithelium. The objective of the present study was to evaluate the effect of octadecenyl thiophosphate (OTP), a novel rationally designed, metabolically stabilized LPA mimic, on radiation-induced apoptosis of intestinal epithelial cells in vitro and in vivo. Methods: The receptors and signaling pathways activated by OTP were examined in IEC-6 and RH7777 cell lines and wild-type and LPA1 and LPA2 knockout mice exposed to different apoptotic stimuli. Results: OTP was more efficacious than LPA in reducing gamma irradiation-, camptothecin-, or tumor necrosis factor α/cycloheximide-induced apoptosis and caspase-3-8, and caspase-9 activity in the IEC-6 cell line. In RH7777 cells lacking LPA receptors, OTP selectively protected LPA2 but not LPA1 and LPA3 transfectants. In C57BL/6 and LPA1 knockout mice exposed to 15 Gy gamma irradiation, orally applied OTP reduced the number of apoptotic bodies and activated caspase-3-positive cells but was ineffective in LPA2 knockout mice. OTP, with higher efficacy than LPA, enhanced intestinal crypt survival in C57BL/6 mice but was without any effect in LPA2 knockout mice. Intraperitoneally administered OTP reduced death caused by lethal dose (LD)100/30 radiation by 50%. Conclusions: Our data indicate that OTP is a highly effective antiapoptotic agent that engages similar prosurvival pathways to LPA through the LPA2 receptor subtype. © 2007 AGA Institute

    Mice with transgenic overexpression of lipid phosphate phosphatase-1 display multiple organotypic deficits without alteration in circulating lysophosphatidate level

    No full text
    Lipid phosphate phosphatase 1 (LPP-1) is presumed to regulate the balance between lipid phosphates and their dephosphorylated counterparts. The currently prevailing hypothesis based on in vitro studies proposes that LPP-1 should regulate phospholipid lipid growth factors and second messengers, including lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), diacylglycerol (DAG), and phosphatidic acid (PA). To evaluate the role of LPP-1 in vivo, three transgenic lines were established. RT-PCR, Western blotting, and enzymatic activity measurement confirmed a copy number-dependent ubiquitous overexpression of LPP-1. PMA-stimulated PA production in immortalized LPP-1 fibroblasts led to an elevation in the accumulation of DAG without major changes in the phospholipid classes isolated from the liver. The LPP-1 phenotype showed reduced body size, birth weight, and abnormalities in fur growth, whereas histological abnormalities included significantly decreased number of hair follicles, disrupted hair structure, and a severely impaired spermatogenesis. Implantation of LPP-1 or wild-type embryos into pseudopregnant LPP-1 mothers yielded a reduced litter size. The plasma level of alanine-leucine aminotransferase was significantly elevated. Unexpectedly, plasma concentrations of the five major acyl-species of LPA were indistinguishable between wild-type and LPP-1 animals. In contrast with previous studies using plasmid-mediated overexpression in vitro, transgenic overexpression of LPP-1 did not affect ERK1/2 activation elicited by LPA, S1P, thrombin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF), which was presumed to be a major signaling event regulated by LPP-1. Thus, transgenic overexpression of LPP-1 in mice elicited a number of unexpected phenotypic alterations without affecting several aspects of LPA signaling, which point to previously unappreciated mechanisms and roles of lipid phosphates in select organs. © 2003 Elsevier Inc. All rights reserved

    Lysophosphatidic Acid Induces Neointima Formation Through PPARγ Activation

    No full text
    Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor-like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)γ antagonist GW9662 and mimicked by PPARγ agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine. In contrast, stearoyl-oxovaleryl phosphatidylcholine, a PPARα agonist and polypeptide epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor failed to elicit neointima. The structure-activity relationship for neointima induction by LPA analogs in vivo is identical to that of PPARγ activation in vitro and disparate from that of LPA G protein-coupled receptor activation. Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662. These results suggest that selected LPA analogs are important novel endogenous PPARγ ligands capable of mediating vascular remodeling and that activation of the nuclear transcription factor PPARγ is both necessary and sufficient for neointima formation by components of oxidized low density lipoprotein

    Preexposure to hyperoxia causes increased lung injury and epithelial apoptosis in mice ventilated with high tidal volumes

    No full text
    Both high tidal volume mechanical ventilation (HV) and hyperoxia (HO) have been implicated in ventilator-induced lung injury. However, patients with acute lung injury are often exposed to HO before the application of mechanical ventilation. The potential priming of the lungs for subsequent injury by exposure to HO has not been extensively studied. We provide evidence that HO (90%) for 12 h followed by HV (25 μl/g) combined with HO for 2 or 4 h (HO-12h+HVHO-2h or -4h) induced severe lung injury in mice. Analysis of lung homogenates showed that lung injury was associated with cleavage of executioner caspases, caspases-3 and -7, and their downstream substrate poly(ADP-ribose) polymerase-1 (PARP-1). No significant lung injury or caspase cleavage was seen with either HO for 16 h or HV for up to 4 h. Ventilation for 4 h with HO (HVHO) did not cause significant lung injury without preexposure to HO. Twelve-hour HO followed by lower tidal volume (6 μl/g) mechanical ventilation failed to produce significant injury or caspase cleavage. We also evaluated the initiator caspases, caspases-8 and -9, to determine whether the death receptor or mitochondrial-mediated pathways were involved. Caspase-9 cleavage was observed in HO-12h+HVHO-2h and -4h as well as HO for 16 h. Caspase-8 activation was observed only in HO-12h+HVHO-4h, indicating the involvement of both pathways. Immunohistochemistry and in vitro stretch studies showed caspase cleavage in alveolar epithelial cells. In conclusion, preexposure to HO followed by HV produced severe lung injury associated with alveolar epithelial cell apoptosis
    corecore