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Abstract

In this study we characterized the effects of radiation injury on the expression and function of the 

autotaxin (ATX)-LPA2 GPCR axis. In IEC-6 crypt cells and jejunum enteroids quantitative RT-

PCR showed a time- and dose-dependent upregulation of lpa2 in response to γ-irradiation that was 

abolished by mutation of the NF-κB site in the lpa2 promoter or by inhibition of ATM/ATR 

kinases with CGK-733, suggesting that lpa2 is a DNA damage response gene upregulated by 

ATM via NF-κB. The resolution kinetics of the DNA damage marker γ-H2AX in LPA-treated 

IEC-6 cells exposed to γ-irradiation was accelerated compared to vehicle, whereas 

pharmacological inhibition of LPA2 delayed the resolution of γ-H2AX. In LPA2-reconstituted 

MEF cells lacking LPA1&3 the levels of γ-H2AX decreased rapidly, whereas in Vector MEF were 

high and remained sustained. Inhibition of ERK1&2 or PI3K/AKT signaling axis by pertussis 

toxin or the C311A/C314A/L351A mutation in the C-terminus of LPA2 abrogated the effect of LPA 

on DNA repair. LPA2 transcripts in Lin−Sca-1+c-Kit+ enriched for bone marrow stem cells were 

27- and 5-fold higher than in common myeloid or lymphoid progenitors, respectively. 

Furthermore, after irradiation higher residual γ-H2AX levels were detected in the bone marrow or 
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jejunum of irradiated LPA2-KO mice compared to WT mice. We found that γ-irradiation increases 

plasma ATX activity and LPA level that is in part due to the previously established radiation-

induced upregulation of TNFα. These findings identify ATX and LPA2 as radiation-regulated 

genes that appear to play a physiological role in DNA repair.
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Introduction

Radiation induced DNA double-strand breaks (DSB) are detected by ataxia telangiectasia 

mutated kinase (ATM), which induces the activation of cell-cycle check points to allow 

DNA damage repair, cell survival, and stress response pathways [1, 2]. The decision 

between survival and apoptosis of a cell exposed to a genotoxic insult depends on the stress 

signals and also on inputs from the cell microenvironment [3]. Radiation protectors are 

compounds that prevent radiation injury when applied before exposure whereas, radiation 

mitigators are compounds that can be administered after radiation exposure to attenuate 

injury. Mechanistically, radiation mitigator compounds are aimed at enhancing those innate 

signaling pathways which lead to DNA damage repair (DDR), inhibition of apoptosis, and 

enhancement of cell survival.

The lysophosphatidic acid G protein coupled receptor subtype 2 (LPA2 GPCR) is a member 

of endothelial differentiation gene (EDG) family showing more than 80 % homology to 

LPA1 and LPA3 [4, 5]. The natural ligand of LPA2 is lysophosphatidic acid (LPA) a growth 

factor like molecule abundantly present in biological fluids. LPA is produced primarily from 
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lysophosphatidylcholine (LPC) by the lysophospholipase D enzyme designated autotaxin 

(ATX) [6-8]. LPA2 is the most sensitive GPCR to LPA stimulation with an EC50 of ~1.4 

nM. LPA2 is expressed in a wide range of cell types including hematopoietic [9, 10] and 

embryonic stem cells [11]. LPA2 was shown to prevent and also to mitigate apoptosis 

elicited by serum withdrawal, or genotoxic stressors including chemotherapeutics, and 

radiation-induced DNA damage [12-14]. LPA2 is overexpressed in different tumors thereby 

conferring resistance to radiation- and chemotherapy [15-17].

Our group has synthesiozed LPA2-specific agonist compounds with the ultimate goal of 

developing drugs that can prevent and/or mitigate radiation-injury resulting from exposure 

to high levels of radiation that elicit the hematopoietic (HE) and the gastrointestinal (GI) 

acute radiation syndromes (ARS) [13, 18-22]. Stimulation of LPA2 among others leads to 

activation of MAPK/ERK, PI3K/AKT and NF-κB signaling pathways resulting in enhanced 

cell survival, proliferation, and migration that are important events in radiation injury repair 

[4, 14, 23-25].

The objective of the present study was to characterize the effects of radiation injury on 

expression and function of the ATX-LPA2 axis in cultured cells and in mice exposed to total 

body γ-irradiation (TBI) from a 137Cs source. Specifically, we examined the transcriptional 

regulation of lpa2 in IEC-6 crypt-derived cells and in crypts isolated from the small intestine 

of mice in response to ionizing radiation and evaluated the impact of such regulation on the 

DNA damage response (DDR). Radiation-induced upregulation of lpa2 was mediated by 

ATM-dependent activation of NF-κB transcription. We found that LPA2 was dose- and 

time-dependently upregulated in response to γ-radiation. LPA2 expression and activation 

augmented the repair of DSB monitored by the resolution of phosphorylated histone 2AX 

(γH2AX) in vitro and in vivo. In addition, we evaluated the effect of radiation on LPA 

production via ATX in blood, white adipose tissue (WAT), and the liver of wild type (WT) 

mice. We found that mice exposed to 6 Gy TBI γ-irradiation ATX activity increased within 

4 h, resulting in an increase in plasma LPA levels that favors a radiation-induced acute 

regenerative tissue response. We also found that generation of TNFα accompanying 

radiation exposure upregulated ATX expression in IEC-6 cells. γH2AX resolution was 

delayed in LPA2 knockout (KO) mice compared to WT C57BL/6 mice. These results 

indicate that ATX and LPA2 are regulated by γ-irradiation and play a role in the endogenous 

DNA damage response and repair pathways.

Methods

Materials

LPA 18:1, 1-Heptadecanoyl-LPC (17:0), and 1-heptadecanoyl-LPA (17:0) was purchased 

from Avanti Polar Lipids (Alabaster, AL, USA). A stock solution of LPA (2 mM) was 

prepared with equimolar complex with charcoal-stripped, fatty acid-free bovine serum 

albumin (BSA, Sigma-Aldrich; St. Louis, MO, USA) in phosphate-buffered saline (PBS). 

The LPA2-specific antagonist Amgen compound 35 reported by Beck et al. and the LPA2-

specific agonist compound 11d (designated radioprotectin 1, RP-1) were synthesized as 

described previously [21, 26]. The FS-3 ATX substrate was from Echelon Biosciences (Salt 

Lake City, UT, USA). LY294002 was purchased from Cell Signaling Technology (Danvers, 
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MA, USA), U0126 from Promega (Madison, WI, USA), pertussis toxin from LIST 

Biological Laboratories, Inc. (Campbell, CA, USA), CGK-733 from Calbiochem (San 

Diego, CA, USA).

Culture and irradiation of IEC-6 cells

IEC-6 non-transformed crypt-derived rat embryonic intestinal epithelial cells at passage 17 

were plated in 6-well plates at a density of 105cells/well in 1.5 ml complete culture medium 

as described previously [18]. The next day, cells were irradiated with 5, 10, or 15 Gy γ-

irradiation from a 137Cs source at a dose rate of 4.4 Gy/min. After irradiation, the culture 

medium was replaced with fresh complete culture medium. Cells were harvested for RNA 

isolation using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) at 12, 24, or 36 h after 

irradiation.

Generation of mouse embryonic fibroblast (MEF) cells from LPA1 × LPA2 double KO mice 
reconstituted with the human LPA2 ortholog

Very few cell lines lack LPA GPCR. To generate a radiation-sensitive cell platform that 

lacks the EDG family LPA GPCR we generated a MEF cell line from LPA1 × LPA2 double 

KO mice that also lack endogenous LPA3 expression and transduced them with lentiviral 

constructs of the human LPA2 ortholog (LPA2 MEF) or an empty vector (Vector MEF) 

[24] . We used LPA2 and Vector MEF cells to evaluate the effects of LPA2 activation on 

DDR as we described [19, 22].

Isolation and culture of intestinal crypts

The animal protocols used in the present study were reviewed and approved by the 

Institutional Animal Use and Care Committee of the University of Tennessee Health 

Science Center Memphis. The small intestine was removed from euthanized 8 week-old 

C57BL/6 mice and washed with cold PBS. After opening the small intestine, villi were 

scraped off and discarded before the tissue was cut into small pieces. After several rinses 

with cold PBS, the tissue was incubated at 4°C with 2 mM EDTA in PBS for 30 min and 

passed through a cell strainer with 70 μm pore size (BD Biosciences, San Jose, CA, USA). 

Subsequently, the crypts that passed through the strainer were collected by centrifugation at 

400 × g for 5 min and washed with enteroid medium (Gibco, Grand Island, NY, USA) 

including 1x Glutamax, 20 units/ml penicillin, 20 μg/ml streptomycin, 10mM HEPES, (all 

supplements from Gibco) without growth factors and centrifuged at 400 × g for 2 min. After 

discarding the supernatant, the isolated crypts were resuspended with Matrigel (BD 

Biosciences) and plated in 24-well -plates. Enteroid medium (500 μl) supplemented with 

1xB27 (Gibco) 1xN2 (Gibco), 1mM N-acetyl cysteine (Sigma-Aldrich), 100ng/ml Noggin, 

(PeproTech, Rocky Hill, NJ, USA), 1μg/ml R-spondin-1, (R&D Systems, Minneapolis, MN, 

USA) and 50ng/ml EGF (R&D Systems) were added to the crypts in the hardened Matrigel. 

The enteroids were incubated at 37°C in the presence of 5% CO2-95% air atmosphere for 24 

h and irradiated with 4 Gy at a dose rate of ~ 0.85 Gy/min.
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Quantitative RT-PCR (QPCR)

Total RNA (1.5 μg) was used for the synthesis of cDNA using the ThermoScript RT-PCR 

system for first strand synthesis (Invitrogen – Life Technologies, Grand Island, NY, USA). 

QPCR reactions were performed using cDNA mix (cDNA corresponding to 35 ng RNA) 

with 300 nmol of the primers in a final volume of 25 μl of 2 × concentrated RT2 Real-Time 

SYBR Green/ROX master mix (Qiagen) in an Applied Biosystems 7300 Real-Time PCR 

instrument (Norwalk, CT, USA). The cycle parameters were: 50°C for 2 minutes, one 

denaturation step at 95°C for 10 minutes and 40 cycles of denaturation at 95°C for 10s 

followed by annealing and elongation at 60°C. Relative gene expression of each transcript 

was normalized to GAPDH using the ΔΔCt method. Primer sequences for GAPDH were: 

forward: 5′-CTGCACCACCAACTGCTTAG-3′, reverse: 5-

GGGCCATCCACAGTCTTCT-3, and for LPA2: forward 5-

CCAGCCTGCTTGTCTTCCTA-3, and reverse: 5-GTGTCCAGCACACCACAAAT-3. For 

ATX gene product QPCR measurements 0.1 × 106 IEC-6 cells were plated per well of a 6-

well plate in complete growth media. The following day, cells were serum-starved for 24 

hours prior to stimulation with 10ng/ml of rat TNFα (R&D Systems) for 15 min, 3 h and 6h. 

The ATX forward primer was 5′-ATTACAGCCACCAAGCAAGG-3′ and the reverse 5′-

GGCAGAGAAAGCCACTGAAG -3′.

Construction and assay of a luciferase reporter plasmid containing the human LPA2 

promoter

The human LPA2 promoter sequence between base pairs −965/+139 was amplified from 50 

ng of human genomic DNA with Kod hot start polymerase (Novagen, Madison, WI, USA) 

with the primers: LPA2-forward: 5-GTAGAGACGGGGTTTCAGCATG-3 and LPA2-

reverse: TATAAGCTTCTGGGCCTCCAGTCACGCC, with an added HindIII restriction 

site to the reverse primer. The PCR product was cloned into pGL 4.10(luc2) (Promega) 

between the EcoRV and HindIII restriction sites. Site-directed mutagenesis of the NF-κB 

sites was done with the Quick Change kit (Stratagene, La Jolla, CA, USA). The consensus 

binding site: GGGGCTCCCC was changed into GTGATTCTCC with the forward primer 5-

GCCGTGGAGGCGTGATTCTCCCAGGTGGCGGG -3 and reverse primer 5-

CCCGCCACCTGGGAGAATCACGCCTCCACGGC-3. The promoter constructs 

containing firefly luciferase were cotransfected into HEK293T cells in triplicate with 

pGL4.74[hRluc/TK] (Promega) containing renilla luciferase as internal control using 

Lipofectamine 2000 (Life Technologies) reagent. As a positive control for radiation-induced 

NFκB activation cells were transfected with pGL4.32[Luc2P/ NFκB-RE/Hygro] (Promega). 

Relative activities (Firefly/Renilla luciferase activity) were determined 24 hours after 

transfection using Dual Glow kit (Promega).

Measuring LPA2-activation using ligand-induced Ca2+-mobilization assay

To determine the LPA2 responsiveness of irradiated IEC-6 cells to ligand-activation Ca2+ 

mobilization assays were used. We generated dose-response curves using the LPA2-specific 

agonist compound designated Radioprotectin-1 (RP-1) reported in our previous publication 

by Patil et al. [21]. Fura-2AM-loaded IEC-6 cells were exposed to 0.03-10 μM RP-1 in 
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quadruplicate wells. Ligand-mediated rise in intracellular Ca2+ was measured using a Flex 

Station 2 robotic fluorescent plate reader (Molecular Devices) as described previously [18].

Flow cytometric determination of γ-H2AX in IEC-6 cells

IEC-6 cells were grown in complete medium supplemented with 10 μg/ml insulin as 

described previously [18]. Prior to 15 Gy γ-radiation cells were serum starved overnight and 

treated with 10 μM LPA or vehicle (0.1% BSA). After irradiation the medium was replaced 

with serum-free medium containing either LPA or vehicle. At the indicated time points (0.5, 

1, 2, 4, 6, 8 hours post radiation) cells were trypsinized, washed with cold PBS and stained 

with anti-human/mouse phospho-H2AX (residue S139, γH2AX) labeled with eFluor660 

(eBioscience, San Diego, CA) using the Foxp3/Transcription Factor Staining Buffer Set 

(Biolegend, San Diego, CA) and protocol. For inhibition of the LPA2 receptor, the cells 

were treated with 0.2 μM or 1 μM of the LPA2 antagonist compound 35 for 30 min followed 

by 15 min of 10 μM LPA treatment prior to irradiation. After irradiation the culture medium 

was changed to fresh medium, containing the antagonist and LPA. Cells were harvested and 

stained for γH2AX 6 h after irradiation. Fluorescence was measured using a LSR II 

instrument (Becton Dickinson Inc., Franklin Lakes, NJ) and analyzed with the FACSDiva 

software (Becton Dickinson Inc.).

Isolation of hematopoietic stem cell and progenitor cell and qPCR analysis of LPA2 

receptor expression

For purification of hematopoietic stem cell and progenitor cell populations, femurs and 

tibias from C57Bl/6 mice were flushed with 5 ml Iscove’s modified Dulbecco’s medium 

containing 2% fetal bovine serum and a single cell suspension was prepared by passing 

through a 26 g needle. Lineage-positive cells were depleted using the lineage-cell depletion 

kit (Miltenyi Biotec, Auburn, CA, USA) and lineage-negative cells were stained with 

fluorochrome-conjugated antibodies against Sca-1, c-Kit, IL-7Rα, CD34 and FCRγII/III. 

Hematopoietic stem cell enriched LSK (Lin−Sca-1+c-Kit+), common myeloid progenitor 

(CMP) enriched (Lin−Sca-1−IL-7R−c-Kit+FCR γll/llllowCD34+) and lymphoid progenitor 

cell enriched (Lin−Sca-1intc-KitintIL-7R+ CD34+) cell populations were sorted on a FACS 

Aria (BD Bioscience, San Jose, CA, USA), collected in PBS and cell pellets frozen at 

−80°C. All antibodies were purchased from BD Biosciences or eBiosciences.

RNA was isolated from cells with RNeasy Micro kit (Qiagen). RNA concentration and 

quality were assessed with Nanodrop (Thermo-Fischer Scientific, Waltham, MA, USA). 50 

ng total RNA were converted to SPIA amplified cDNA using the Ovation PicoSL WTA 

System V2 (NuGEN Technologies, San Carlos, CA, USA) according to the manufacturer’s 

protocol. The amplified SPIA cDNA was purified with Qiagen QIAquick PCR purification 

column (Qiagen) according to modifications from NuGEN. Quantitative PCR reactions were 

carried out in triplicate using 2 ng of SPIA amplified cDNA with 300 nmol of each primer in 

a final volume of 25 μl of 2 × Maxima SYBR Green/ROX qPCR master mix (Thermo 

Fischer Scientific). Amplification was performed after one initial step of 10 min at 95 °C for 

40 cycles at 94°C /15 s and 60°C /60 s with StepOnePlus real-time PCR system (Applied 

Biosystems). Relative gene expression of each mRNA to HPRT was determined using the 

dCt method. The HPRT primer sequence used were: Forward 5′-
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AAGGACCTCTCGAAGTGTTGGATA-3′, and reverse 5′-

CATTTAAAAGGAACTGTTGACAACG-3′.

Flow cytometric determination of γH2AX in mouse bone marrow

Gender- and age-matched eight-to-ten-week-old WT and LPA2 KO (kind gift of Dr. Jerold 

Chun, Scripps Institute, La Jolla, CA) mice were exposed to 6 Gy TBI γ-radiation at a dose 

rate of 80 cGy/min. Bone marrow was removed from the tibia and femur of one leg by 

flushing the bones with PBS. After lysis of erythrocytes with ACK lysis buffer (Invitrogen – 

Life Technologies), bone marrow cells were fixed and permeabilized with the FoxP3 Fix/

Perm kit and stained with anti-human/mouse γH2AX antibody labeled with PerCP-

eFluor710 (eBioscience). Flow cytometric measurements and analysis was done as 

described above.

Immunofluorescence staining for γH2AX of jejunum and IEC-6 cells

Cryo-sections of jejunum (12 μm thickness) were fixed in acetone methanol mixture (1:1) at 

−20°C for 2 min and rehydrated in PBS. Sections were permeabilized with 0.2% Triton 

X-100 in PBS for 15 min and blocked in 4% non-fat milk in TBST (20mM TRIS, pH 7.2 

and 150 mM NaCl). Sections were incubated with anti-rabbit γH2AX (Cell Signaling) at 

room temperature for 1 h, washed 3 times in 1 % milk in TBST, then incubated with the Cy3 

conjugated anti-rabbit IgG (Sigma-Aldrich) diluted 1:100 in 4 % milk in TBST for 1 hour at 

room temperature in the dark. Cells were washed with PBS and counterstained with Hoechst 

33342 (Sigma-Aldrich). Fluorescence was visualized by confocal microscopy using a Zeiss 

LSM 5 microscope and images from x-y sections (1 μm) were collected using the Zen 

software (Zeiss, Göttingen, Germany).

For γH2AX detection in IEC-6 cells a total of 7 × 105 cells were grown in 24-well plates on 

13-mm glass cover slips and serum starved overnight. The next morning, cells were treated 

with 1 μM LPA2 antagonist for 1 hour and subsequently with 10 μM LPA or vehicle (0.1% 

BSA) for 15 minutes prior to irradiation with 15 Gy.

Cells were washed twice in ice cold PBS and fixed with methanol : acetone (1:1). Following 

permeabilization in 0.2% Triton-X in PBS for 15 min, cells were washed 3 times in PBS and 

blocked with 4 % milk in TBST. Cells were incubated with anti-rabbit γH2AX (1:400; Cell 

Signaling) at room temperature for 1 h, washed 3 times in 1 % milk in TBST, and incubated 

with the secondary fluorescent conjugated antibody (antirabbit Cy3 conjugated anti-rabbit 

IgG; Sigma) diluted 1:100 in 4 % milk in TBST for 1 hour at room temperature in dark. 

Cells were washed with PBS and stained with DAPI. Cells were visualized by confocal 

microscopy as above and analyzed with the ImageJ software (NIH).

Western blotting

Cell lysates were prepared in M-PER buffer (Thermo-Fisher Scientific) supplemented with 

Proteinase Phosphatase Inhibitor Cocktail (Sigma-Aldrich). Protein concentration was 

determined with a BCA protein assay kit (Thermo-Fisher Scientific) using BSA as standard. 

Equal amounts of cell lysates were fractionated on 10% SDS-PAGE gels and transferred to 

nitrocellulose membrane. The membranes were blocked with 5% (W/V) milk in TBST for 1 
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h before overnight probing with antibodies. Subsequently the membranes were washed in 

TBST and reacted with the appropriate horseradish peroxidase–conjugated secondary 

antibodies and developed using the Pierce™ SuperSignal West Pico ECL kit (Thermo-Fisher 

Scientific). Antibodies to total and phosphorylated forms of AKT, ERK1/2 and γH2AX, 

were purchased from Cell Signaling and the antibody to β-actin was from Sigma-Aldrich.

Determination of autotaxin activity

Heparin-anticoagulated plasma (5 μl) or tissue homogenate (20 μg protein, dissolved in 20 μl 

of 10 mM TRIS-HCl, (pH 7.4) with protease inhibitor cocktail) was incubated with 2 μM 

FS-3 substrate and 10 μM BSA in a total 60 μl of assay buffer consisting of 50 mM TRIS-

HCl, 140 mM NaCl, 5 mM KCl, 1mM CaCl2, and 1 mM MgCl2 (pH 8.0) for 4 h at 37°C. 

The fluorescence (λexcitation= 485 nm and λemission = 538 nm) was recorded every 2 min by a 

FlexStation 2 plate reader. Reaction rates were calculated based on the slope of the linear 

portion of the reaction curves and reported as ATX activity in terms of RFU/min. ATX 

activity between sham and irradiated samples was compared via Student’s t-test for plasma, 

WAT, and liver samples. Measurement of ATX activity in conditioned media:

To determine the effect of TNFα on ATX activity in IEC-6 cells, 0.9 × 106 cells were plated 

per 10 cm dish in complete growth medium and cultured for 2 days. Growth medium was 

replaced with serum-free medium for 24 h followed by stimulation with 10 ng/ml of rat 

TNFα for 24 hours. Conditioned medium was collected, centrifuged, filtered through a 

0.22μm filter unit and concentrated (~40 fold) using the Amicon Ultra 30 KDa-cutoff 

Centrifugal Filter Units (Millipore). Control conditioned medium was generated from cells 

not exposed to TNFα stimulation. ATX activity was measured by incubating 20μL of 

concentrated conditioned medium in the presence of 10μM BSA and 2μM FS-3 in triplicates 

after a 4 h incubation period.

Lipid extraction and determination of LPC and LPA from plasma and tissues

LPC and LPA were extracted according to the method of Okudaira et al. [27]. In brief, 0.02 

ml of the EDTA-treated mouse plasma was placed in 1.5-mL siliconized sample tubes. 

Acidic methanol (0.09 ml, pH 4) containing 0.03 nmol 17:0-LPA and 7.5 nmol 17:0-LPC 

was added to the plasma samples. This mixture was sonicated for 3 min in a bath sonicator. 

After centrifugation at 16,100 × g for 10 min at 4°C, the supernatants were collected and 

analyzed by LC-MS/MS.

The ground tissues were vigorously shaken with 9 times the volume (μL/mg V/W) of acidic 

methanol (pH 4) containing 17:0-LPA (0.3 nmol) and 17:0-LPC (75 nmol) and 150 mg of 

1.0 mm zirconium oxide beads for 10 min at 4°C. This homogenate was sonicated for 3 × 30 

s in a bath sonicator. After an initial centrifugation at 1,000 × g for 10 min at 4°C, the 

supernatants were recentrifuged at 16,100 × g for 10 min at 4°C. The supernatant was 

filtered using a 0.2μm captiva premium syringe filter from Agilent Technologies (Santa 

Clara, CA, USA) and subjected to the LC-MS/MS. LC-MS/MS was performed using an 

ABI Sciex (Foster City, CA, USA) API4500 mass spectrometer with an HTC-xt PAL 

autosampler (CTC Analytics, Zwingen, Switzerland) connected to an LC-30AD HPLC 

pump (Shimadzu, Kyoto, Japan), CTO-30A column oven (Shimadzu), CBM-20A controller 
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(Shimadzu). LPC in the lipid extract were separated on an Ascentis Express C18 column 

(2.7 μm, 2.1 × 150 mm; Supelco, Bellefonte, PA, USA) developed with an isocratic solvent 

system of methanol-water mixture (19:1, v/v) containing 5 mM ammonium formate (Solvent 

A), sample injection volume was 5 μl at 0.2 ml/min. The molecular species of LPA in the 

extract were separated on an ODS-100Z column (5 μm, 2.0 × 150 mm; Tosoh, Tokyo, 

Japan) with Solvent A, sample injection volume was 5 μl at 0.22 ml/min. For quantification, 

LPC was analyzed by positive ion electrospray ionization with multiple reaction monitoring 

(MRM) of parent ([M + H]+)/daughter ([phosphocholine]+) at m/z 184, where M is the 

molecular weight of the parent species. LPA species were quantified in ESI- with MRM of 

parent ([M − H]−)/daughter ions ([cyclic glycerophosphate]−) at m/z 153. Quantification was 

accomplished by referencing peak areas to those of the internal standards. Conditions of 

MRM analysis for LPC were as follows: curtain gas 50, CAD gas 8, IS voltage 5000V, 

source temperature 500°C, GS1 30, GS2 80, DP 90, EP 10, CE 33, and CXP 13. Conditions 

of MRM analysis for LPA were as follows: curtain gas 20, CAD gas 8, IS voltage −4500V, 

source temperature 700°C, GS1 30, GS2 80, DP −80, EP −6, CE −30, and CXP −7.

Irradiation of mice

The total-body irradiation (TBI) protocol was reviewed and approved by the University of 

Tennessee Health Science Center Animal Care and Use Committee. Irradiations were 

performed using a 137Cs source (J.L. Shepherd & Assoc. Mark I, Model 25, San Fernando, 

CA, USA). Animals placed in a rotating turntable mouse holder received 6 Gy total body 

irradiation at a dose rate of 76 cGy/min and sacrificed 15 min, 4 h, and 24 h post-irradiation. 

Radiation field mapping and calibration by ion chamber dosimetry was done by 

manufacturer at installation. In addition, routine validation and quality control 

measurements of exposure rates and exposure rate mapping in the chamber at positions of 

interest was conducted by a Certified Health Physicist using a calibrated RadCal 0.6 cc 

therapy grade ion chamber/electrometer system. High-dose thermoluminescent dosimeters 

were used in most irradiations to validate the actual dose delivered to the mice (MD 

Anderson Cancer Center Radiation Dosimetry Services). The isodose field was validated 

using Gafchromic film for high-dose dosimetry (10-50 Gy, Ashland Inc., Covington, KY).

Results

Induction of lpa2 expression by γ-irradiation

We tested the hypothesis that ionizing radiation regulates the expression of the lpa2 

transcript using QPCR. In the IEC-6 crypt-derived primary epithelial cell line QPCR 

analysis revealed that following γ-irradiation lpa2 transcripts increased in a time- and dose-

dependent manner (Fig.1A). Increased expression of lpa2 was observed at all doses between 

5 – 15 Gy, beginning the earliest at 12 h postirradiation with a maximal induction of ~4.5-

fold at 24 h postirradiation after 15 Gy exposure (Fig. 1A). A similar upregulation trend was 

seen in lpa2 expression following 4 Gy γ-irradiation of cultured enteroids that are 

representative of crypts enriched in stem cells. In cultured enteroids, lpa2 showed a 2-fold 

increase relative to the control one day after IR treatment (Fig. 1B).
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We and others have reported previously that LPA2 protects cells from apoptosis induced by 

genotoxic stress as a result of radiation and chemotherapeutic drugs [12-14, 28]; however, 

no direct evidence has been reported about the effects of LPA2 on DDR. To assess the 

potential implications of LPA2 upregulation in radiation-induced DDR we treated IEC-6 

cells with CGK-733, an ATM/ATR kinase inhibitor and quantified induction of lpa2 

transcripts by QPCR (Fig. 1C). Our results indicate that the transcriptional regulation of lpa2 

in response to radiation is dependent, at least in part, on ATM because CGK-733 dose-

dependently blocked the radiation-induced upregulation. At 5 μM concentration CGK-733 

completely abolished the radiation-induced upregulation of lpa2 transcripts.

To elucidate the transcription-factor pathway responsible for the upregulation of the lpa2 

gene, we performed an in silico search using the Transfac software (Qiagen) for predicted 

transcription factor binding sites in the human lpa2 promoter. The NF-κB consensus binding 

site 5′-CGGGGCTCCCCCC-3′ at position −62 from the transcription initiation site 

indicated that the lpa2 promoter could be regulated by the NF-κB pathway in response to γ-

irradiation. Because radiation-induced DNA-damage is known to activate ATM that in turn 

upregulates the transcriptional activity of NF-κB [29], the link between radiation-induced 

lpa2 upregulation via NF-κB offers a testable hypothesis and extends our observations 

shown in figure 1C for the role of ATM in this pathway. Mutation of this binding 

GGGGCTCCCC site to GTGATTCTCC abolished the radiation-induced upregulation of a 

reporter gene construct transfected into HEK293T cells (Fig. 1D). This result is consistent 

with the role of NF-κB in the radiation-induced upregulation of the lpa2 transcript.

Despite the significant increase in the abundance of lpa2 transcripts it is possible that protein 

may not increase or due to the high radiation dose applied, the LPA2 receptor might not be 

functional. To assess the functionality of the LPA2 GPCR pathway we used ligand-activated 

Ca2+ assay to measure the response of irradiated IEC-6 cells to the LPA2-specific agonist 

compound RP-1 [21]. Irradiated IEC-6 cells gave significantly higher Ca2+ responses to 

compound RP-1 than the non-irradiated cells shifting the dose-response curve to the left, 

indicating that was LPA2 remains functional and is upregulated in irradiated IEC-6 cells 

(Fig 2A).

Activation of LPA2 accelerates resolution of radiation-induced γH2AX in IEC-6 cells

The modified histone γH2AX is a sensitive biomarker for the detection of DNA damage. 

The presence of γH2AX foci indicates DSB, whereas resolution of γH2AX correlates with 

the repair of DNA breaks [30, 31].

To examine whether LPA2 is involved in radiation-induced DNA damage repair, we used 

flow cytometry to quantify γH2AX in IEC-6 cells exposed to radiation. As shown in figure 

2B the percentage of γH2AX positive cells peaked within the first hour after radiation and it 

was lower compared to vehicle treated cells at all subsequent times tested. This effect was 

most evident in LPA treated cells compared to vehicle treatment at 6 h and 8 h post radiation 

showing a significantly faster resolution of γH2AX in LPA treated cells compared to vehicle 

treatment. As IEC-6 cells express multiple subtypes of LPA GPCR [12] to confirm the 

contribution of LPA2 in γH2AX resolution, we treated IEC-6 cells with the LPA2 specific 

antagonist Amgen compound 35 [26] and quantified γH2AX level at 6 h after irradiation 
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with 15 Gy using flow cytometry. Indeed, pharmacological inhibition of LPA2 abrogated the 

effect of LPA in a dose dependent manner resulting in significantly higher percentage of 

γH2AX positive cells as compared to LPA treatment alone (Fig. 2C). Similar results were 

obtained using immunofluorescence staining followed by confocal microscopy of γH2AX-

positive nuclei of IEC-6 cells grown on coverslips treated with the LPA2 antagonist 

(supplementary figures 1 A and B).

Activation of the LPA2 GPCR enhances the kinetics of DNA damage repair

LPA2-MEF cells are sensitive to radiation-induced apoptosis and can be rescued by 

postirradiation administration of LPA2 agonists as shown previously [19, 22]. To dissect the 

interplay between LPA2 receptor and DNA damage repair, we used LPA2- and Vector MEF 

cells serum starved for 2 hours and treated with 10 μM LPA or vehicle for 15 minutes before 

exposure to 15 Gy of γ-irradiation at a dose rate of 4.4 Gy/min. Cell lysates were prepared at 

different time points after irradiation and subjected to western blot analysis to detect γH2AX 

(figure 3A). Of note that in both cell lines radiation induced comparable levels of H2AX 

phosphorylation with a peak at 1 hour after irradiation regardless of LPA treatment, 

indicating that the absence of LPA2 does not influence the activation of DDR pathway. 

However, at later time points, at 2 and 4 h, treatment with 10 μM LPA reduced the level and 

accelerated reduction/resolution of the phosphorylation of H2AX in LPA2-MEF compared 

to Vector MEF providing strong evidence for the involvement of LPA2 in the DNA damage 

repair pathway.

It is well documented that the prosurvival effects elicited by LPA2 are mediated in part 

through the classical G-protein-coupled signals and also the ternary macromolecular 

signaling complex formed between LPA2-TRIP6-NHERF2 [25, 32]. First, we examined the 

involvement of the classical PTX-sensitive G-protein signaling pathway in the resolution 

kinetics of γH2AX in LPA treated LPA2-MEF cells. PTX treatment (100 ng/mL) diminished 

the activation of AKT and ERK, and also delayed the resolution of γH2AX (figure 3B). This 

result is consistent with a mechanism that a component of the LPA2-DNA damage signaling 

pathway involves the PTX sensitive Gi/0 heterotrimeric G proteins.

Next, to assess the contribution of the LPA2-TRIP6-NHERF2 ternary macromolecular 

signaling complex in the DNA damage repair we used MEF reconstituted with wild type 

LPA2 or the C311A/C314A/L351A LPA2 mutant (CACALA-MEF), which is deficient in 

the assembly of the ternary complex [25]. In LPA2-MEF versus CACALA MEF LPA-

activated AKT and ERK showed different kinetics after IR treatment. In CACALA MEF the 

intensity of ERK and AKT phosphorylation peaked at the early 15 min time point and 

slowly decreased thereafter. In contrast in LPA2-MEF the trend was different showing a 

slow but sustained activation, which correlated with a faster decrease of γH2AX compared 

to that found in the MEF expressing the triple mutant LPA2 (figure 3C). This result is 

consistent with a previous report that established a role of TRIP6 activation in the 

amplification and maintenance of ERK1/2 activation in response to LPA stimulation [25].

Finally, to confirm that LPA-induced dephosphorylation of γH2AX depends directly on the 

activity of the PI3K/AKT and MEK1/ERK pathways we pretreated cells with the PI3K 

inhibitor LY294002 (10 μM) and the MEK1 inhibitor U0126 (20 μM) for 15 minutes prior 
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to 15 Gy irradiation. AKT, ERK and H2AX phosphorylation were assessed by western 

blotting 4 h after irradiation. In the presence of PI3K or MEK1 inhibitors resolution of 

γH2AX was inhibited (figure 4A).

Sustained ERK1/2 activation is a prerequisite for cell cycle progression and cell 

proliferation after the DSB repair is completed [33]. We compared ERK activation over an 8 

h-long post-irradiation period in LPA2-MEF and Vector MEF. In Vector MEF LPA induced 

a limited and transient phosphorylation of ERK1/2 with a maximal intensity at 2 h. In 

contrast, in the LPA2-MEF a robust and sustained ERK activation was present even after 8 h 

post LPA treatment (figure 4B & insert).

LPA2 knockout mice are deficient in DNA damage repair

We have shown previously that LPA2-specific agonists can mitigate the HE-ARS by 

rescuing the hematopoietic stem cell compartment from apoptosis [20, 22]. Furthermore, 

LPA2-KO mice show increased rate of radiation-induced apoptosis, diminished crypt 

survival in the intestine and increased mortality due to the GI-ARS [13]. Based on these 

findings we hypothesized that the increased mortality in LPA2-KO mice might be due to the 

lack of LPA2-mediated DNA damage repair. LPA2 was found to be expressed on Lin-cKit

+Sca1+ stem cells and common myeloid progenitors in mice (figure 5A). Furthermore LPA2 

shows the highest expression amongst all the LPA1/2/3/4/5 receptors in human CD34+ 

hematopoietic progenitor cells [22]. To extend our in vitro observations concerning the role 

of LPA2 in DDR described above to a murine radiation injury model we irradiated WT and 

LPA2-KO mice with 6 Gy at a dose rate of 0.80 Gy/min and measured γH2AX expression in 

the bone marrow 15 minutes, 4 h and 24 h post-irradiation using flow-cytometry (figure 5B). 

LPA2-KO mice showed significantly higher residual γH2AXhigh levels compared to bone 

marrow cells from WT mice supporting the importance of LPA2 in the repair process. 

Immunohistological staining of γH2AX in jejunum sections from these mice showed similar 

difference between WT and LPA2-KO mice 4 h post-irradiation (figures 5C-F).

Radiation increases ATX activity and LPA level in plasma

Augmentation of DNA repair requires ligand activation of LPA2 in vitro. The circulating 

steady-state concentration of LPA in plasma is in the low nanomolar range. To determine if 

γ-irradiation affects LPA production via ATX, we measured the ATX activity and LPC/LPA 

content of plasma, WAT, and liver tissues in sham-irradiated and mice exposed to 6 Gy. 

Four h after irradiation, individual LPA plasma concentrations of the 18:0, 18:1, 18:2, 20:4 

and 22:6 molecular species each showed modest elevation in the irradiated plasma samples 

although they were not significant (figure 6A). However, the 16:0 species and the 

cumulative LPA concentration of these species was elevated significantly (p < 0.05) in the 

pooled irradiated samples. We could not detect significant difference in plasma LPC content 

for the same molecular species as those we measured of LPA (figure 6B). The WAT has 

been shown to be a source of plasma LPA and for this reason we also quantified LPA 

species in this tissue. In the WAT samples, only the 18:2 molecular species of LPA showed 

a significant increase (figure 6C). Among the molecular species of LPC, 16:0, 18:1, 18:2 

and 20:4 showed significant elevation resulting in a significant difference in the total LPC 

content compared to non-irradiated samples (figure 6D). In the liver all measured LPA 
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species showed decreases but only LPA 16:0 was significant together with the total LPA 

content (Figure 6E). Among the LPC species measured all but the 16:0 species showed 

significant decreases (figure 6F).

Because ATX is thought to be responsible for the regulation of plasma LPA level and we 

have found a slight but significant increase in the steady-state level of plasma LPA in the 

irradiated mice we also measured ATX activity in plasma, WAT, and liver (figure 7). The 

activity of ATX in plasma but not in WAT or in liver tissues showed a significant elevation 

in irradiated mice that might explain the slight increase in plasma LPA concentration. 

Radiation injury has been documented to cause elevation in circulating TNFα levels [34, 

35]. TNFα is known to be a robust inducer of ATX transcription [36]. Based on these 

reports we hypothesized that TNFα generated in irradiated tissues could be involved at least 

in part in the transcriptional upregulation of ATX and the subsequent increase in ATX 

activity. To test this hypothesis, we treated IEC-6 cells with 10 ng/ml TNFα and quantified 

ATX transcripts using QPCR (figure 7B). TNFα treatment after 15 min was accompanied 

by a significant increase in ATX transcripts and continued to increase up to 24 h the last 

time point tested. ATX activity in the 24 h conditioned medium showed a significant 

increase in the TNFα treated sample compared to the untreated control medium (Fig. 7C). 

These results together suggest that ATX is also upregulated by γ-irradiation and this might 

at least in part involve TNFα-induced transcriptional activity mediated by NF-κB.

Discussion

Stimulation of the LPA2 receptor by a variety of selective and specific agonists has been 

shown to mitigate HE- and GI-ARS [13, 19, 20, 22]. We have recently reported that the 

LPA2 specific agonist DBIBB decreased radiation-induced apoptosis in the small intestine, 

increased crypt regeneration and promoted recovery of the hematopoietic compartment [22]. 

In the present study we examined whether exposure to γ-irradiation affects the expression 

and function of the ATX-LPA2 axis in cultured cells and in mice (figure 8). Specifically, we 

examined the transcriptional regulation of lpa2 in IEC-6 crypt-derived cells and in crypts 

isolated from the small intestine of mice. Our results provide extensive evidence for a novel 

function of LPA2 in radiation-induced DNA damage repair by showing that γ-irradiation 

upregulates its expression and activity. Furthermore, we found that γ-irradiation increases 

plasma ATX activity and LPA level that is in part due to the previously established 

radiation-induced upregulation of TNFα. These findings identify ATX and LPA2 as 

radiation-regulated genes that appear to play a physiological role in DDR (Fig.8).

We found that the abundance of LPA2 transcripts shows a radiation dose-response 

relationship and increases with time during the first 24 h. This tight relationship is 

unexpected and suggests that LPA2 transcripts may represent an endogenous biodosimeter/

biomarker. Our data suggest that lpa2 is a radiation responsive gene regulated by the 

activated ATM kinase via NF-κB in response to radiation-induced genotoxic stress (Fig. 1A, 

C, & D). Activation of NF-κB has been firmly linked to radiation exposure. The induction 

of NF-κB activation upon DNA damage depends on NEMO SUMOylation, and ATM 

activation by DSB [29] and can confer cell survival or apoptosis depending on the activated 

target genes. Exposure of mice to total body irradiation induces dose dependent NF-κB 
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activation in a tissue-specific manner [37-39]. In mice exposed to lethal 8.5 Gy dose robust 

NF-κB activation was detected in brain, liver, and intestine, and moderate activation in 

heart, lung, spleen, kidney, and testis [39]. Wang et al. have demonstrated that activation of 

NF-κB protected intestinal epithelial cells of the small intestinal crypts from ionizing 

radiation induced damage [38]. We showed in two in vitro model systems of murine 

intestine that lpa2 is upregulated upon radiation and this response is NF-κB dependent. 

Radiation (4 Gy) induced significant increase in lpa2 mRNA level in irradiated in vitro 

cultured intestinal crypts and elicits a time- and dose-dependent transcriptional response in 

IEC-6 cells, an epithelial cell line of intestinal crypt origin. Site directed mutagenesis of NF-

κB binding site in the human lpa2 promoter abrogated the effect of radiation. Furthermore, 

we provide evidence that radiation exposure of IEC-6 cells not only increased the abundance 

of LPA2 transcripts but also increased the responsiveness of the cells to an LPA2-specific 

agonist indicated by the significantly higher Ca2+ responses and the left shift in the dose-

response curve. In fact the induction of LPA2 in response to radiation may represent a 

positive feedback between LPA2 and NF-κB activation.

We used pharmacological inhibition of ATM, the master regulator of DDR, to link LPA2 to 

DNA damage response. In IEC-6 cells pre-treated with the ATM/ATR kinase inhibitor CGK 

733 radiation failed to induce upregulation of lpa2. The antiapoptotic effect of LPA2 is well 

documented [12-14, 18-20], and we have shown previously that the LPA2 specific agonist 

DBIBB increased the clonogenic capacity of irradiated IEC-6 crypt epithelium-like cells via 

inhibition of caspase 3/7 activation [22]. The same LPA2 agonist also facilitated the 

resolution of γH2AX in LPA2 MEF [22]. We show evidence that LPA treatment induces a 

faster repair kinetics compared to the untreated cells and this effect was blocked completely 

by a specific LPA2 antagonist excluding the contribution of the other LPA receptors 

expressed on IEC-6 cells. The antiapoptotic function of LPA2 depends both on the classical, 

pertussis toxin-sensitive G1/0 mediated pathway and on the ligand–induced assembly of a 

ternary signaling complex that includes LPA2-TRIP6-NHERF2 [19, 25]. Using the LPA1/2 

double KO-derived MEF stably transduced with either the WT LPA2 or the C-terminus 

mutated CACALA-LPA2, which is unable to recruit the ternary complex, we demonstrated 

that the LPA2 -induced DDR requires both of these pathways. The disruption of either 

pathway results in delayed DNA damage repair indicated by the protracted presence of high 

γH2AX levels, probably due to accompanying decrease in AKT and ERK activation. The 

implication of ERK and AKT prosurvival kinase pathways in the LPA2-induced repair is 

supported by results from the pharmacological inhibition of PI3K with LY294002 and 

MEK1 with U016, leading to accumulation of γH2AX following treatment with either 

blocker. Moreover, we showed that LPA treatment induces robust and sustained ERK 

activity in LPA2-MEF but not in Vector MEF. These results taken together indicate that 

LPA2 is necessary and sufficient to augment the DDR response.

Although we provide extensive proofs supporting the role of LPA2 in the radiation induced 

DDR, further studies are needed to elucidate the detailed mechanism linking LPA2 signaling 

to DSB repair. We hypothesize that DNA-PK could be the convergence point downstream 

signals from ERK. A recent study demonstrated that in mouse hematopoietic stem and 

progenitor cells exposed to irradiation and trombopoietin treatment activated ERK and NF-
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κB pathways, which in turn induced the upregulation of their common target, the early stress 

response gene Iex-1, leading to enhancement of DNA-PK activity and nonhomologous end 

joining (NHEJ) [40]. Kriegs et el [41] reported the role of MAPK signaling in EGFR-

mediated DSB repair based on evidence that inhibition of ERK blocked the NHEJ. 

Although, LPA GPCR have been shown to transactivate EGFR signaling [41, 42], our 

findings showed that EGFR is not required for the antiapoptotic effect of LPA. Thus, more 

experiments will be necessary to piece together whether LPA similarly to thrombopoietin 

induces transcriptional upregulation of iex-1 and formation of a macromolecular complex 

between ERK1/2, IEX-1 and DNA-PK.

We also demonstrated that LPA2 mediates DDR in vivo and the lack of LPA2 receptor does 

not influence the activation of DNA damage response pathway in the HE and GI system. 

Purified hematopoietic stem cells abundantly express LPA2 transcripts. We measured 

γH2AX in the bone marrow of LPA2-KO and WT mice exposed to 6 Gy TBI 15 min, 4 h 

and 24 h post-irradiation. At the early time points the level of γH2AX was almost identical 

in bone marrow cells of WT and LPA2-KO mice pointing to similar activation of the DDR 

pathway. However, significant difference occurred at 24 h post-irradiation, with a 

significantly higher residual damage remaining in the bone marrow of the LPA2-KO mice 

compared to WT animals. γH2AX staining of jejunum sections from WT and LPA2-KO 

C57BL/6 mice 4 h after irradiation showed more residual γH2AX compared to WT mice. 

This result indicates that in the absence of exogenously added LPA the DDR proceeds more 

rapidly or achieves a more complete resolution of DSB in WT mice expressing LPA2 GPCR 

in their small intestine. LPA is present in and also generated from food [43] and in blood 

plasma. The exact source of LPA responsible for activation of LPA2 in enterocytes and 

intestinal stem cells is unknown at the present time.

In biological fluids, LPA is primarily generated by ATX [44]. In this context we examined 

LPA and LPC levels in blood plasma, WAT the major source of circulating LPA [45], and 

the liver that is the site of LPA clearance from blood. The total concentration of circulating 

plasma LPA showed a significant elevation in irradiated mice compared to sham irradiated 

controls. In testicular WAT tissue we found that only the LPA 18:2 species showed 

significant elevation after irradiation. The total LPA content of the liver tissue showed a 

significant decrease after irradiation. Taking these data together, the possibility arises that 

irradiation is responsible for the upregulation of ATX activity which in turn elevates plasma 

LPA concentration. ATX reaction rates in these tissues showed significant radiation-induced 

elevation only in the plasma (Fig. 8). To date there is no evidence for posttranscriptional 

physiological regulation of plasma ATX activity. For this reason we hypothesized that the 

increase in ATX activity of plasma could be due to transcriptional upregulation of the ATX 

gene. ATX transcription has been shown to be regulated by NF-κB and NFAT [36, 46]. 

Radiation exposure of animals is known to cause a rapid elevation in TNF-α and IL-6 levels 

[34, 35]. We hypothesized that radiation-induced TNF-α could be responsible at least in part 

for the upregulation of ATX. In this context, we also note that ATX is anchored to the cell 

surface via integrin [47] and heparin binding [48]. Thus, de novo synthesized ATX 

maintained at the cell surface could generate LPA in a localized manner that in turn activates 

LPA GPCR in a juxtacrine and/or paracrine manner. Such localized LPA production would 
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not lead to high elevation in the steady-state concentration of circulating LPA. Because we 

found an accelerated resolution of γH2AX staining in jejunum sections of irradiated mice we 

used the IEC-6 cell line to test whether TNF-α upregulates ATX in these cells. TNF-α 

indeed increased the abundance of ATX transcripts in IEC-6 cells providing circumstantial 

evidence that such mechanism could take place in vivo too. Further experiments will be 

required to assess the role of the pro-inflammatory milieu induced by radiation on the 

transcriptional regulation of LPA2 and ATX expression.

In a larger context the present findings concerning the radiation-induced upregulation of the 

ATX-LPA2 signaling axis, it will be of great interest to investigate how radiation therapy 

affects ATX activity and LPA production, given that to both ATX and LPA were attributed 

with playing a major role in metastasis, chemo- and radiation-resistance of several cancers 

[15, 49-51].

Conclusion

Based on the presented data we propose that the ATX-LPA-LPA2 axis is a novel, radiation-

induced stress response pathway, contributing to DNA damage repair and cell survival 

following radiation induced genotoxic insult.
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DSB DNA double strand breaks

DDR DNA damage repair

ATX lysophospholipase D autotaxin

LPA lysophosphatidic acid

LPC lysophosphatidylcholine

ATM ataxia teleangiectasia mutated kinase

PTX pertussis toxin

NHEJ DNA nonhomologous end joining
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Highlights

• γ-irradiation upregulates ATX and LPA2 expression.

• Plasma ATX activity and LPA are elevated in irradiated mice.

• Upregulation of ATX and LPA2 are mediated by NF-κB.

• Resolution γH2AX is accelerated by LPA2 activation in vivo.

• LPA2-mediated augmentation of γH2AX resolution involves AKT, ERK1/2, 

and assembly of a C-terminal macromolecular signaling complex.

• ATX and LPA2 upregulation play a role in endogenous DNA damage repair.
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Figure 1. lpa2 is a radiation responsive gene that is time- and dose-dependently upregulated in 
response to γ-irradiation via an ATM-mediated NF-κB activation
Panel A. Quantitative RT-PCR analysis of lpa2 expression in cultured IEC-6 irradiated with 

5, 10 and 15 Gy at 12, 24 and 36 h. *P < 0.05 between irradiated and non-irradiated samples 

of each time point. Panel B. lpa2 gene expression measured by qRT-PCR in cultured 

intestinal crypts 24 h after 4 Gy irradiation. Panel C. Quantitative RT-PCR of lpa2 

expression 24 h post-irradiation in IEC-6 cells treated with increasing concentration of the 

ATM/ATR kinase inhibitor CGK-733 30 min prior to 15 Gy irradiation. *P < 0.05 between 

irradiated and irradiated samples treated with CGK-733, @ P < 0.05 between 0 Gy and 15 

Gy, # P < 0.05 between 0 Gy samples treated or non-treated with CGK-733. Panel D. 
Mutation of a putative NF-κB –binding site present in the human lpa2 promoter results in 

abrogation of radiation induced upregulation of transcriptional activity measured with the 

luciferase promoter assay. Data represents the mean of two experiments ± SD performed in 

triplicate. *P < 0.05 between irradiated and control samples.
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Figure 2. LPA2 is functionally upregulated and it maintains its functionality after irradiation as 
measured by Ca2+ assay
Panel A. IEC-6 cells irradiated with 15 Gy were treated with an LPA2 specific agonist 24 h 

later to elicit a Ca2+ response. Data represents the mean of two experiments ± SD performed 

in triplicate. Statistical analysis of the data between the groups was performed by a Student’s 

t-test. *P < 0.05. Panel B. The LPA2 receptor accelerates the repair kinetics of DNA 

damage. Kinetics of γH2AX formation and resolution in irradiated IEC-6 cells treated with 

10μM LPA for 15 minutes prior to irradiation. γH2AX was measured at the indicated time 

points by flow cytometry. Panel C. Pharmacological inhibition of LPA2 dose-dependently 

abrogates the effect of LPA. Cells were treated with 0.2μM and 1μM LPA2 antagonist 

Amgen compound 35 (ANT) 30 min prior to the addition of 10 μM LPA or vehicle 15 min 

before irradiation with 15 Gy. γH2AX was measured 6 h after irradiation with flow 

cytometry. Data shown are representative of three experiments. Statistical analysis of the 

data between the groups was performed by a Student’s t-test. *P < 0.05.
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Figure 3. LPA2 facilitates the radiation induced DNA damage repair in part via the classical G-
protein-coupled signals and also the ternary macromolecular complex between LPA2-TRIP6-
NHERF2 indicated by γH2AX levels detected by Western blotting
Panel A. Time-course of γH2AX resolution in LPA2-MEF (LPA2) and Vector MEF 

preincubated with 10 μM LPA and irradiated with 15 Gy confirms the role of LPA2 in DNA 

damage repair with a 10 × higher residual γH2AX expression level in Vector MEF 8 h post-

IR treatment. Panel B. Inhibition of Gi/0 heterotrimeric G proteins with PTX in LPA2-MEFs 

prior to irradiation treatment (15 Gy) results in reduced AKT and ERK1&2 activation and 

accumulation of γH2AX. Panel C. Disruption of the ternary macromolecular signaling 

complex formed between LPA2-TRIP6-NHERF2 in the CACALA-MEFs pretreated for 15 

minutes with either 10 μM LPA or vehicle and irradiated with 15 Gy results in reduced AKT 

and ERK1&2 activation and a subsequent γH2AX accumulation. Arbitrary units represent 

light intensity values measured by Image J software and normalized to β-actin and 

calculated as fold over non-irradiated control.
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Figure 4. Pharmacological inhibition of AKT or ERK 1&2 activation confirms their role in 
LPA2 mediated DDR
Panel A. LPA2-MEFs were treated with either 10 μM of the PI3K inhibitor LY294002 or 20 

μM of the MEK1 inhibitor U0126 for 30 min before addition of 10 μM LPA for 15 min prior 

to irradiation (15 Gy). In the presence of PI3K or MEK1 inhibitors concomitant with AKT 

and ERK1&2 inhibition the repair process was also delayed marked by increased 

accumulation of γH2AX 4 hours after irradiation compared with the LPA only treated 

samples. Panel B. LPA2 activation confers sustained ERK1&2 phosphorylation, a 

prerequisite for cell cycle progression. Arbitrary units represent light intensity values 

measured by Image J software and normalized to β-actin and calculated as fold over non-

irradiated control. Blots are representative of two other experiments.

Balogh et al. Page 24

Cell Signal. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. The role of LPA2 in DDR of HE stem/progenitor cells and in the jejunum
Panel A. lpa2 expression detected by qRT-PCR analysis on stem (LSK) and lymphoid 

(CLP) and myeloid progenitor cell populations (CMP) from murine bone marrow. Panel B. 
LPA2-KO mice are deficient in the DDR process. Bone marrow isolated from mice exposed 

to 6 Gy TBI was subjected to flow cytometric analysis 15 minutes, 4 and 24 h 

postirradiation to determine γH2AX positive cells. LPA2-KO mice show elevated residual 

γH2AX compared to WT mice 24 h after 6 Gy total body irradiation. Representative of two 

experiments, n= 5 mice. *Denotes p value < 0.05 calculated by Student’s t-test. Panel C. 
γH2AX immunostaining in the jejuni of WT and LPA2-KO mice 4 h after 6 Gy total body 

irradiation shows elevated γH2AX expression in LPA2-KO mice compared to WT (γH2AX 

foci are stained red, nuclei are blue). Calibration bar = 250 μm.

Balogh et al. Page 25

Cell Signal. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Radiation induced changes in LPA and LPC content of plasma (A & B), WAT (C & D), 
and liver tissue (E & F)
LPC and LPA were extracted from plasma, WAT and livers of mice exposed to 6 Gy total 

body irradiation 4 h post-irradiation. LPC and LPA content were determined by LC-MS/MS. 

Statistical analysis of the data between the groups was performed by ANOVA with 

Bonferoni’s post test. *P < 0.05, n = 5 mice.
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Figure 7. ATX expression and enzyme activity is upregulated in response to TNF-α
Panel A. ATX reaction rate in irradiated mouse plasma, WAT, and liver samples of mice 

irradiated with 6 Gy at 4 h post-exposure. Average reaction rates were compared between 

vehicle and irradiation treatment using one-factor ANOVA with Bonferroni’s post-test to 

determine if rates differed significantly versus non-irradiated control. * P < 0.05. For plasma 

samples, n = 10 mice with * denoting p < 0.05 statistical significance. For tissue samples, n 

= 5 mice. Panel B. Quantitative RT-PCR analysis of atx gene expression in cultured IEC-6 

stimulated with 10ng/ml TNFα for the indicated time points. Average mRNA abundance 

were compared via ANOVA with Bonferroni’s post-test to identify significant differences 

versus T0 control. * P < 0.05; ** P < 0.001. Panel C. ATX activity was measured in 

concentrated conditioned medium (CCM) of IEC-6 cells stimulated with or without 10ng/ml 

TNFα for 24 hours. Negative control contains fluorescent substrate FS-3 alone, whereas 5 

nM recombinant purified ATX was used as a positive control for the assay. Control CCM 

(CTL CCM) was generated from IEC-6 cells not exposed to TNFα stimulation. The change 

in fluorescent intensity was monitored over 4 hours at 37°C using the FlexStation II. The 

differences in ATX activity between 4-h end- and 0-h start-point were calculated and 

normalized to negative control and ANOVA was paired with Bonferroni’s post-test to 

determine if reaction rates significantly differed. *** P < 0.0001
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Figure 8. Working hypothesis for the regulation of the ATX-LPA2 axis in response to γ-radiation
Radiation is known to induce the release of proinflammatory cytokines such as TNFα by 

hematopoietic cells into the blood which could upregulate ATX production through NF-κB 

in the endothelial lining of blood vessels and other yet to be identified target cells. This 

results in increased ATX enzyme activity and subsequent LPA content of plasma. In 

intestinal stem cell like cells, modeled by the IEC-6 cell line, the LPA2 receptor is 

upregulated in response to radiation induced DNA damage via an ATM- NF-κB dependent 

pathway. At the same time, ATX production is upregulated by the radiation-induced release 

of TNFα into the circulation. The elevated LPA content and receptor upregulation drives the 

enhanced DNA damage repair.
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