42 research outputs found

    Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis

    Get PDF
    To liberate fatty acids (FAs) from intracellular stores, lipolysis is regulated by the activity of the lipases adipose triglyceride lipase (ATGL), hormone-sensitive lipase and monoacylglycerol lipase. Excessive FA release as a result of uncontrolled lipolysis results in lipotoxicity, which can in turn promote the progression of metabolic disorders. However, whether cells can directly sense FAs to maintain cellular lipid homeostasis is unknown. Here we report a sensing mechanism for cellular FAs based on peroxisomal degradation of FAs and coupled with reactive oxygen species (ROS) production, which in turn regulates FA release by modulating lipolysis. Changes in ROS levels are sensed by PEX2, which modulates ATGL levels through post-translational ubiquitination. We demonstrate the importance of this pathway for non-alcoholic fatty liver disease progression using genetic and pharmacological approaches to alter ROS levels in vivo, which can be utilized to increase hepatic ATGL levels and ameliorate hepatic steatosis. The discovery of this peroxisomal β-oxidation-mediated feedback mechanism, which is conserved in multiple organs, couples the functions of peroxisomes and lipid droplets and might serve as a new way to manipulate lipolysis to treat metabolic disorders

    Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) have been suggested as the master regulators of adipose tissue formation. However, their role in regulating brown fat functionality has not been resolved. To address this question, we generated mice with inducible brown fat-specific deletions of PPARα, β/δ, and γ, respectively. We found that both PPARα and β/δδ are dispensable for brown fat function. In contrast, we could show that ablation of PPARγ in vitro and in vivo led to a reduced thermogenic capacity accompanied by a loss of inducibility by β-adrenergic signaling, as well as a shift from oxidative fatty acid metabolism to glucose utilization. We identified glycerol kinase (Gyk) as a partial mediator of PPARγ function and could show that Gyk expression correlates with brown fat thermogenic capacity in human brown fat biopsies. Thus, Gyk might constitute the link between PPARγ-mediated regulation of brown fat function and activation by β-adrenergic signaling.</p

    GPR180 is a component of TGFβ signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1

    Get PDF
    Activation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGF beta signalling pathway and regulates the activity of the TGF beta receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGF beta signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.Activation of thermogenic adipocytes is a strategy to combat metabolic diseases. Here the authors report that GPR180 is a component of TGF beta signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1, and contributes to the regulation of glucose and energy metabolism

    BATLAS: Deconvoluting Brown Adipose Tissue

    Get PDF
    Recruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes. By combining mouse and human transcriptome data, we identify a gene signature that can classify brown and white adipocytes in mice and men. Using a machine-learning-based cell deconvolution approach, we develop an algorithm proficient in calculating the brown adipocyte content in complex human and mouse biopsies. Applying this algorithm, we can show in a human weight loss study that brown adipose tissue (BAT) content is associated with energy expenditure and the propensity to lose weight. This online available tool can be used for in-depth characterization of complex adipose tissue samples and may support the development of therapeutic strategies to increase energy expenditure in humans

    Statins: benefits and risks revisited: Editorial

    No full text
    ISSN:1945-458

    Vlastnosti sulfidu arsenitého (beta- As4S4) modifikovaného mechanickou aktivací

    No full text
    Arsenic sulphide beta-As4S4 has been modified by mechanical activation in a planetary ball mill. As a consequence, the solid-state properties and dissolution yield have been influenced. The following changes were observed: the increase of specific surface area, changes in the morphology (the formation of submicron particles), the occurrence of nanoparticles (21-31 nm), changes in crystal lattice parameters and changes in the Raman shift of particular vibrations. As a consequence of these changes, the dissolution rate of beta-As4S4 has been increased, which is a challenge for the application in cancer research.Sulfid arsenitý (beta-As4S4) byl modifikován mechanickou aktivací v planetárním kulovém mlýnu. Následkem tohoto procesu došlo k ovlivnění vlastností materiálu a jeho rozpouštěcího výtěžku. Byly pozorovány následující změny: nárůst specifického povrchu, změny morfologie (tvorba submikronových částic), přítomnost nanočástic (21-31 nm), změny parametrů krystalové mřížky a změny v Ramanovských posunech vibrací. Následkem těchto změn došlo k nárůstu rychlosti rozpouštění beta-As4S4, což je výzvou pro aplikace ve výzkumu rakoviny

    ESRRG and PERM1 Govern Mitochondrial Conversion in Brite/Beige Adipocyte Formation

    No full text
    When exposed to cold temperatures, mice increase their thermogenic capacity by an expansion of brown adipose tissue mass and the formation of brite/beige adipocytes in white adipose tissue depots. However, the process of the transcriptional changes underlying the conversion of a phenotypic white to brite/beige adipocytes is only poorly understood. By analyzing transcriptome profiles of inguinal adipocytes during cold exposure and in mouse models with a different propensity to form brite/beige adipocytes, we identified ESRRG and PERM1 as modulators of this process. The production of heat by mitochondrial uncoupled respiration is a key feature of brite/beige compared to white adipocytes and we show here that both candidates are involved in PGC1α transcriptional network to positively regulate mitochondrial capacity. Moreover, we show that an increased expression of ESRRG or PERM1 supports the formation of brown or brite/beige adipocytes in vitro and in vivo. These results reveal that ESRRG and PERM1 are early induced in and important regulators of brite/beige adipocyte formation.ISSN:1664-239

    Thermosensitive Drug Delivery System SBA-15-PEI for Controlled Release of Nonsteroidal Anti-Inflammatory Drug Diclofenac Sodium Salt: A Comparative Study

    No full text
    International audienceMesoporous SBA-15 silica material was prepared by the sol–gel method and functionalized with thermosensitive polyethylenimine polymers with different molecular weight (g·mol−1): 800 (SBA-15(C)-800), 1300 (SBA-15(C)-1300) and 2000 (SBA-15(C)-2000). The nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium was selected as a model drug and encapsulated into the pores of prepared supports. Materials were characterized by the combination of infrared spectroscopy (IR), atomic force microscopy (AFM), transmission electron microscopy (TEM), photon cross-correlation spectroscopy (PCCS), nitrogen adsorption/desorption analysis, thermogravimetry (TG), differential scanning calorimetry (DSC) and small-angle X-ray diffraction (SA-XRD) experiments. The drug release from prepared matrixes was realized in two model media differing in pH, namely small intestine environment/simulated body fluid (pH = 7.4) and simulated gastric fluid (pH = 2), and at different temperatures, namely normal body temperature (T = 37 °C) and inflammatory temperature (T = 42 °C). The process of drug loading into the pores of prepared materials from the diclofenac sodium salt solutions with different concentrations and subsequent quantitative determination of released drugs was analyzed by UV-VIS spectroscopy. Analysis of prepared SBA-15 materials modified with polyethylenimines in solution showed a high ability to store large amounts of the drug, up to 230 wt.%. Experimental results showed their high drug release into the solution at pH = 7.4 for both temperatures, which is related to the high solubility of diclofenac sodium in a slightly alkaline environment. At pH = 2, a difference in drug release rate was observed between both temperatures. Indeed, at a higher temperature, the release rates and the amount of released drug were 2–3 times higher than those observed at a lower temperature. Different kinetic models were used to fit the obtained drug release data to determine the drug release rate and its release mechanism. Moreover, the drug release properties of prepared compounds were compared to a commercially available medicament under the same experimental conditions

    Basal re-esterification finetunes mitochondrial fatty acid utilization

    No full text
    Objective: Emerging evidence suggest the existence of constant basal lipolysis and re-esterification of a substantial fraction of thus liberated fatty acids. In stimulated lipolysis, the re-esterification is proposed to be a protective mechanism against lipotoxicity; however, the role of the lipolysis coupled to re-esterification under basal conditions has not been deciphered. Methods: We used adipocytes (in vitro differentiated brown and white adipocytes derived from a cell line or primary SVF culture) to study the effect of inhibition of re-esterification by pharmacological DGAT1 and DGAT2 inhibitors alone or in combination. We then evaluated cellular energetics, lipolysis flux, and lipidomic parameters along with mitochondrial properties and fuel utilization. Results: In adipocytes, DGAT1 and 2 mediated re-esterification is a moderator of fatty acid oxidation. Combined inhibition of both DGATs (D1+2i) increases oxygen consumption, which is largely due to enhanced mitochondrial respiration by lipolysis-derived fatty acids (FAs). Acute D1+2i selectively affects mitochondrial respiration without affecting the transcriptional homeostasis of genes relevant to mitochondrial health and lipid metabolism. D1+2i enhances the mitochondrial import of pyruvate and activates AMP Kinase to counteract CPT1 antagonism, thus facilitating the mitochondrial import of fatty acyl-CoA. Conclusions: These data implicate the process of re-esterification in the regulation of mitochondrial FA usage and uncover a mechanism of FAO regulation via crosstalk with FA re-esterification.ISSN:2212-877
    corecore