14,170 research outputs found

    Vibrational dynamics of solid poly(ethylene oxide)

    Get PDF
    Molecular dynamics (MD) simulations of crystalline poly(ethylene oxide) (PEO) have been carried out in order to study its vibrational properties. The vibrational density of states has been calculated using a normal mode analysis (NMA) and also through the velocity autocorrelation function of the atoms. Results agree well with experimental spectroscopic data. System size effects in the crystalline state, studied through a comparison between results for 16 unit cells and that for one unit cell has shown important differences in the features below 100 cm^-1. Effects of interchain interactions are examined by a comparison of the spectra in the condensed state to that obtained for an isolated oligomer of ethylene oxide. Calculations of the local character of the modes indicate the presence of collective excitations for frequencies lower than 100 cm^-1, in which around 8 to 12 successive atoms of the polymer backbone participate. The backbone twisting of helical chains about their long axes is dominant in these low frequency modes.Comment: 19 pages, 7 figures (Phys.Rev.B submitted on 28.11.2002) Revised versio

    How a well-adapting immune system remembers

    Full text link
    An adaptive agent predicting the future state of an environment must weigh trust in new observations against prior experiences. In this light, we propose a view of the adaptive immune system as a dynamic Bayesian machinery that updates its memory repertoire by balancing evidence from new pathogen encounters against past experience of infection to predict and prepare for future threats. This framework links the observed initial rapid increase of the memory pool early in life followed by a mid-life plateau to the ease of learning salient features of sparse environments. We also derive a modulated memory pool update rule in agreement with current vaccine response experiments. Our results suggest that pathogenic environments are sparse and that memory repertoires significantly decrease infection costs even with moderate sampling. The predicted optimal update scheme maps onto commonly considered competitive dynamics for antigen receptors

    Drag of two-dimensional small-amplitude symmetric and asymmetric wavy walls in turbulent boundary layers

    Get PDF
    Included are results of an experimental investigation of low-speed turbulent flow over multiple two-dimensional transverse rigid wavy surfaces having a wavelength on the order of the boundary-layer thickness. Data include surface pressure and total drag measurements on symmetric and asymmetric wall waves under a low-speed turbulent boundary-layer flow. Several asymmetric wave configurations exhibited drag levels below the equivalent symmetric (sine) wave. The experimental results compare favorably with numerical predictions from a Reynolds-averaged Navier-Stokes spectral code. The reported results are of particular interest for the estimation of drag, the minimization of fabrication waviness effects, and the study of wind-wave interactions

    Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery

    Full text link
    Can we improve detection in the thermal domain by borrowing features from rich domains like visual RGB? In this paper, we propose a pseudo-multimodal object detector trained on natural image domain data to help improve the performance of object detection in thermal images. We assume access to a large-scale dataset in the visual RGB domain and relatively smaller dataset (in terms of instances) in the thermal domain, as is common today. We propose the use of well-known image-to-image translation frameworks to generate pseudo-RGB equivalents of a given thermal image and then use a multi-modal architecture for object detection in the thermal image. We show that our framework outperforms existing benchmarks without the explicit need for paired training examples from the two domains. We also show that our framework has the ability to learn with less data from thermal domain when using our approach. Our code and pre-trained models are made available at https://github.com/tdchaitanya/MMTODComment: Accepted at Perception Beyond Visible Spectrum Workshop, CVPR 201

    Arithmetic properties of blocks of consecutive integers

    Full text link
    This paper provides a survey of results on the greatest prime factor, the number of distinct prime factors, the greatest squarefree factor and the greatest m-th powerfree part of a block of consecutive integers, both without any assumption and under assumption of the abc-conjecture. Finally we prove that the explicit abc-conjecture implies the Erd\H{o}s-Woods conjecture for each k>2.Comment: A slightly corrected and extended version of a paper which will appear in January 2017 in the book From Arithmetic to Zeta-functions published by Springe

    D3-branes dynamics and black holes

    Get PDF
    Using the D3-brane as the fundamental tool, we adress two aspects of D-branes physics. The first regards the interaction between two electromagnetic dual D-branes in 10 dimensions. In particular, we give a meaning to {\it both} even and odd spin structure contributions, the latter being non vanishing for non zero relative velocity vv (and encoding the Lorentz-like contribution). The second aspect regards the D-brane/black holes correspondence. We show how the 4 dimensional configuration corresponding to a {\it single} D3-brane wrapped on the orbifold T^6/Z_3 represents a regular Reissner-Nordstrom solution of d=4 N=2 supergravityComment: 8 pages, latex, 1 eps figure. Talk presented by M. Bertolini at the conference "Quantum aspects of gauge theories, supergravity and unification" in Corfu`; to appear in the proceeding

    Catalytic Philanthropy In India

    Get PDF
    Catalytic Philanthropy is still in its infancy in India. Despite this, there are a surprising number of exemplary cases where Indian philanthropists are creating large-scale social change far beyond the resources invested. This report highlights these practices as well as the key issues that need to be addressed to accelerate its evolution

    Information Recovery From Black Holes

    Get PDF
    We argue that if black hole entropy arises from a finite number of underlying quantum states, then any particular such state can be identified from infinity. The finite density of states implies a discrete energy spectrum, and, in general, such spectra are non-degenerate except as determined by symmetries. Therefore, knowledge of the precise energy, and of other commuting conserved charges, determines the quantum state. In a gravitating theory, all conserved charges including the energy are given by boundary terms that can be measured at infinity. Thus, within any theory of quantum gravity, no information can be lost in black holes with a finite number of states. However, identifying the state of a black hole from infinity requires measurements with Planck scale precision. Hence observers with insufficient resolution will experience information loss.Comment: First prize in the Gravity Research Foundation Essay Competition, 8 pages, Late
    corecore